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Preface 

The amplification of weak signals into stronger signals is of fundamental 
importance in almost any electronic system. Sometimes this is obvious, 
as in a radio receiver, where the objective is to select and amplify the weak 
signal from the antenna and to present the detected signal via a loud­
speaker. Sometimes the need for amplification is more subtle, as in an 
electronic computer where no "circuit" labeled "amplifier" usually exists. 
Even here amplification is present and important; it may occur in each 
logic element or in only a few, but gain is necessary to ensure that the sig­
nal information is not lost in noise. 

Because of the importance of amplifiers in the electronic art, we have 
tried to produce a work which will be of use to both students and engineers 
who have a need for a second look at amplifier theory from a more advanced 
point of view. We do not cover all types of amplifiers in complete or even 
partial detail. Rather, we review the fundamental principles underlying 
amplifier design and show several methods of design and synthesis which 
have proved useful in the past. Hence, we do not teach "all about ampli­
fiers" but, rather, show some applicable modern methods and help the 
student extend these for himself. 

The first part of the book is a review of the active elements—vacuum 
tubes and transistors—and their use in simple situations. Because one of 
the more valuable benefits of such discussion is appreciation of the relative 
merits and limitations of the two devices, they are considered together— 
e.g., the discussion of high-frequency cutoff includes both tube and tran­
sistor equivalent circuits, to show what elements in each are important in 
determining the high-frequency behavior as well as useful approximations 
to the complete equivalent circuits. Such approximations are particularly 
important in that with a simpler circuit the student can think more clearly 

vii 
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about the logic and validity of WHAT HE IS doing AND AT THE S A M E T I M E de­
velop maturity in approximating to an extent justified by the required 
accuracy of his result. 

The number of equivalent circuits for transistors is kept to a minimum, 
and an effort is made to feature those which have the most physical mean­
ing. It is felt that there are a sufficient number of transistor texts which 
cover multitudes of equivalent circuits exhaustively. Also, no attempt is 
made to cover thoroughly either vacuum-tube or transistor internal elec­
tronics, although some physical reasoning is used to show the reasonable­
ness of an equivalent circuit. 

The second major part of the book deals with the problems of making 
"fast" lowpass amplifiers, e.g., video amplifiers. In this section, the funda­
mental limitations governing the attainment of high-speed high-gain am­
plifiers are discussed. Since the majority of such amplifiers amplify tran­
sient signals, the bulk of the discussion concerns transient response. The 
effect of multiple stages on rise time and sag, the relations between band­
width and rise time, etc., are discussed in both a theoretical and a practical 
manner. The introduction to the distributed amplifier is sufficient to en­
able one to understand the operation and limitations of such amplifiers. 

The third major section, covering bandpass amplification, includes the 
analysis and synthesis of wideband amplifiers from the pole-zero viewpoint, 
and various analogies to gain functions. Although particular stress is laid 
upon the wideband situation, the results are generally applicable to narrow 
bands since the situation is actually simpler in the latter case. 

Chapter 13 on Noise in Amplifier Circuits is intended to furnish the 
student with a reasonable physical picture of the sources of amplifier noise 
and especially to give him some useful equivalent circuits for the calculation 
of amplifier noise. These circuits are used to calculate the noise factor of 
amplifier input circuits and multistage amplifiers. An example of optimiza­
tion of an input circuit is also given. 

The final major section, on amplifier measurements, is included to clear 
up some of the problems common to amplifier design and to the necessary 
testing of the resulting amplifier. Very high-gain amplifiers, in particular, 
have some special problems which make accurate testing impossible if the 
proper precautions are not observed. Some methods of measuring the 
parameters of the common active and passive elements are also discussed, 
since these measurements are often difficult at the frequencies or signal 
levels that must be employed. 

Consideration must be given by the instructor who will use this book as 
a classroom text to two possible aspects which can be emphasized in vary­
ing degree. The one, which is also the aspect likely to be most useful to 
the practicing engineer, is that of a presentation of the present "state of 
the art." Thus the book does provide substantial coverage of useful, high-
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performance amplifier designs, which represent the best that one can do 
with presently available tubes and transistors. 

On the other hand, knowledge of the state of the art is a perishable com­
modity and indeed is being challenged as a proper ingredient in a curriculum 
for engineers who are to solve problems in the distant future more than in 
the immediate future. Such a goal is better met by providing a good 
foundation in mathematics and physics, together with experience in the 
methodology of applying these sciences to engineering problems. While 
this book does not cover the science, it does contain the methodology. It 
includes a record of the successful application of advanced knowledge of 
the physical behavior of electron devices (tubes and transistors) and of 
the mathematics of complex variables and transform theory. The authors 
of the journal papers referred to in the footnotes are the engineers who have 
successfully applied the theory since 1940 or 1950 and who thus are the 
exemplars for the young engineers now in training. The journal papers 
are milestones along an unending road. Their authors possessed the 
superior mathematical ability and the physical understanding, and it is 
instructive to study the manner of application. 

Nevertheless it is important in studying the application to notice that 
it is possible—and indeed an engineering necessity—to carry the applica­
tion of sophisticated concepts and mathematical analysis far enough so 
that design formulas, charts, etc., are provided which do not require 
sophisticated knowledge but rather can be employed by the larger number 
of design engineers possessing more modest training. The results of this 
complete application process can be found throughout the book. 

In short, the subject matter of the book can be studied for the useful, 
practical design data, or instead the book may be regarded as a collection 
of examples of the engineering method whereby mathematics and physics 
have been applied to the solution of new and difficult problems. 

Joseph Mayo Pettit 
Malcolm Myers McWhorter 
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1 
Basic Amplifier Definitions 

1-1 AMPLIFIER GAIN. An amplifier is designed for the purpose of 
increasing the level of voltage, current, or power. The amount of this in­
crease is known as the gain of the amplifier. The method of specifying 
gain quantitatively is important and should be keyed to the intended 
application of the amplifier. For example, in an oscilloscope amplifier 
voltage gain is important because both the input and output are at a high 
impedance level. On the other hand a telephone repeater amplifier has a 
limited available input power and must supply power to a specified line 
impedance. Consequently a gain expressed as a ratio of available input 
power to output power is appropriate. Four commonly used ways of 
specifying gain are illustrated in Fig. 1-1. Although the first three examples 
are given in terms of power, the gain may also be given in terms of voltage 
or current; e.g., insertion voltage gain = V%/V\. The "actual" power gain 
of an amplifier ( = P2/P1) involves certain ambiguities and is not in com­
mon use. 

1-2 FREQUENCY RESPONSE. Speaking first in terms of steady-state 
sine-wave signals, the gain of an amplifier is never absolutely constant with 
respect to frequency; thus a specified value for the magnitude of gain is 
meaningless unless it is known at what frequency that gain was measured. 
In general, "gain" with no qualification means the mid-frequency gain of an 
amplifier. In Fig. 1-2 a typical curve is shown for gain as a function of 
frequency (usually called the frequency response) of a lowpass amplifier. 
Such an amplifier is commonly called an audio or video amplifier depending 
upon the application; the video amplifier requires a higher upper-frequency 
limit. Strictly speaking, a lowpass amplifier should amplify from zero fre­
quency (d-c) to some upper limit; however, to avoid the problems of d-c 
amplification most practical lowpass amplifiers are a-c-coupled and have 
the dashed response curve. The frequencies at which the power gain drops 

1 



2 BASIC AMPLIFIER DEFINITIONS [CHAP. 1 

Source PA Matched Source load load Zs = conjugate of Zs 

(a) 

Source Load 
Z 

Fig. 1-1 Gain definitions, (a) Available power from source = PA,I- i°) Transducer 
power gain = PZ/PA.I- (C) Available power gain= PA,I/PA,\- (d) Insertion power gain 
= PilP\. Two additional definitions of gain are illustrated implicitly in (6), the so-
called voltage gain Vt/Vi and the actual power gain Pi/P\. The symbol = means 
"defined as." 

Fig. 1-2 Typical frequency response of lowpass amplifier. 
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Fig. 1-3 Typical phase and frequency response of a single-stage bandpass amplifier. 

decibel unless the impedance levels across which the voltages are measured 
are equal. If V\ and V2 are measured across Ri and R2 at the input and 
output of the amplifier, respectively, the decibel gain is correctly given as 

V2 Ri 
db = 2 0 log — + 10 log — (1-2) 

Vi R2 

In common practice and throughout this book, the second term is omitted; 
the result is thus proportional to a voltage ratio only and is not necessarily 
the exact power ratio.2 Note that the gain at the band edges is 3 db less 
than at midband; hence, these are often called the — 3-db frequencies. 

1 Other definitions of bandwidth will be given later for special applications; these will 
be assigned different designations to prevent confusion. 

2 For many purposes gain in decibels is given relative to band center. In this case, 
the second term in Eq. (1-2) is not needed. 

to one-half the midband value are known as the band-edge (or cutoff) fre­
quencies—indicated in Fig. 1-2 as ft and / „ . The bandwidth of the amplifier 
is the difference between these two frequencies: B = / „ — fa. In a typical 
lowpass amplifier the frequency fi is so low that B S fu- In cases where G 
is measured as a voltage gain, the upper and lower band-edge frequencies 
are taken to be where the voltage gain drops to l/s/2 of the midband 
value.1 

For many purposes gain is conveniently plotted vs. frequency with both 
scales logarithmic. The magnitude of gain is then usually expressed in 
decibels, 

db = 10 log G p o w e r (1-1) 

Often voltage or current gain is given in decibels, too, although this is, 
strictly speaking, not in conformity with the historical definition of the 
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A bandpass (or filter) amplifier has a frequency response which is similar 
to that shown dashed in Fig. 1-2. The main difference lies in the fact that 
both the low- and high-frequency band edges are carefully controlled in 
order to amplify a specified band of frequencies, rather than merely making 
the low-frequency band edge as low or the high-frequency edge as high as 
possible. We shall find that a practical difference is that the effects at / „ 
and fi can only be treated separately in the lowpass amplifier. 

The phase shift of the output voltage of an amplifier relative to the input 
voltage is also a function of frequency. In Fig. 1-3 is shown such a function 
(known as the phase response), together with the amplitude response for a 
typical bandpass amplifier. 

1-3 Step Response. If the steady-state amplitude and phase re­
sponses of an amplifier are known, the output from the amplifier for any 
input waveform, such as a transient, can presumably be found. However, 
it is frequently more convenient to deal directly with the output of the 
amplifier in response to a standard input or driving waveform without 
taking the intermediate step of finding the sine-wave characteristics. An 
input waveform commonly used is a voltage which changes instantaneously 
from one value to another—a step voltage (Fig. l-4a). Such an input wave-

INPUT 
VOLTAGE 
INPUT 

VOLTAGE 

100% 
OUTPUT 9 0 * 
VOLTAGE B Q % 

10% 

(a) 
JOVERSHOOT 

/ 1 T E = RISE TIME = T2 — TX 

/ ] I (10-90*) 

100% 
OUTPUT 
VOLTAGE 

\TXTDTZ t-*-
(b) 

100% 
OUTPUT 
VOLTAGE SAG 

[LONGER SCALE THAN (6)] 

(c) 
Fig. 1-4 Lowpass amplifier response to a step voltage input. 
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form contains components at all frequencies, and since the amplifier cannot 
uniformly amplify all frequencies, the output is not a faithful reproduction 
of the input. The rising portion of the output (Fig. l-4b) does not jump to 
its final value instantaneously but has a finite rise time. Since it is difficult 
to define exactly where the rise begins and ends, the rise time is usually 
specified as the time for the output to go from 10 to 90 per cent of the final 
value of the output. The output may rise beyond the 100 per cent level 
and oscillate about it. The amount by which the output exceeds the 100 
per cent value is known as overshoot and is usually expressed in per cent also. 

(a) 

(b) 

Input 
voltage 

Output 
voltage 

A . 

Fig. 1-5 A typical amplifier impulse response. 

The output of an amplifier usually does not rise immediately after the 
application of the input step; thus, the amplifier acts to delay the signal 
passing through it. The delay time Tn is arbitrarily defined as the time for 
the output to rise to 50 per cent of its final value measured from the time 
at which the step occurs. 

If the time scale is lengthened out to permit inspection of a longer time 
interval of the output, the output of a typical amplifier is seen to deviate 
from the 100 per cent level. Indeed, if the amplifier is not capable of 
amplifying zero frequency (a d-c amplifier), the ultimate value of the output 
must be zero. The failure of the amplifier output to remain at the 100 per 
cent level is known as sag. This is usually expressed as per cent in a given 
time. Note that the presence of sag makes the exact 100 per cent value 
somewhat uncertain. In a practical amplifier the 100 per cent point may 
be taken most accurately as the output amplitude immediately after the 
oscillations causing overshoot have disappeared.1 

1 If the amplifier has no overshoot, the 100 per cent value is the maximum value of the 
output. In certain amplifiers with/; and/ K close together the 100 per cent value is very 
uncertain. However, the step response is not ordinarily used to characterize such an 
amplifier. 
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1-4 Impulse Response. Another method of describing the transient 
behavior of an amplifier is to use an impulse to drive the amplifier; the 
resulting output is the impulse response. For measurement purposes the 
impulse, which ideally has zero width (duration) but finite area, can be 
satisfactorily approximated by a very narrow pulse, as shown in Fig. l-5a. 
The impulse response of the amplifier is the time derivative of the step 
response, as depicted for a typical amplifier in Fig. 1-56. Rise time and 
delay time can be defined mathematically by using the impulse response 
(see Sec. 4-9); however, it is difficult to use the impulse response for the 
measurement of these quantities. 



2 
Equivalent Circuits for 
Linear Active Devices 

The amplifiers discussed in this book all employ some form of active two-
port device to provide gain in the amplifier. Historically the first such 
active device used in electronics was the vacuum-tube triode. The triode 
is, of course, still in common use, but for the type of amplifier with which 
we shall be primarily concerned a later development, the pentode, is almost 
universally used because of its relative freedom from plate-to-grid feed­
back. For many applications a relative newcomer, the transistor, is replac­
ing the vacuum-tube types because of the greater inherent reliability, lower 
power consumption, and smaller size. However, the complete replacement 
of the tube by the transistor does not seem likely, for the latter has short­
comings at high temperatures and high radiation intensities and in the 
production of high power at high frequencies. Also there are specific circuit 
applications where the tube seems superior to the transistor, e.g., as a high 
input-impedance device, or where low noise operation is necessary with high 
source impedances. Consequently, throughout the following discussion of 
equivalent circuits for both kinds of devices, it is well to keep in mind that 
the equivalent circuits convey implications as to what each device is best 
suited for; the reader should compare the representations of the different 
devices with each other.1 

2-1 Representation of a Linear Active Device with the Two-port 
Circuit Parameters. The active device we wish to represent may be 
indicated as shown in Fig. 2-1, where the device has two input terminals, 
or an input port as it is often called, and two output terminals, or an output 

1 For an interesting discussion, see D. G. Fink, Transistor vs. Vacuum Tubes, Proc. 
IRE, April, 1956, p. 479. 

7 



8 EQUIVALENT CIRCUITS FOR DEVICES [CHAP. 2 

PORT. Usually two of the four terminals are common, i.e., connected 
together inside the box. The functional relationship between the voltages 

Fig. 2-1 The terminal conventions for a general two-port network. 

and currents may be expressed in many different ways, but the following 
illustrate three of the common and useful ways: 
The z, or impedance, parameters 

VX = ZNH + Z L 2 I 2 (2-1) 

V 2 = Z 2 1 / 1 + Z 2 2 / 2 (2-2) 

The y, or admittance, parameters 
h = Vn V, + yi2V2 (2-3) 
12 = 2/2I Vx + y22V2 (2-4) 

The h, or hybrid (series-parallel), parameters 
F X = hnh + h12V2 (2-5) 
h = h2lh + h22V2 (2-6) 

Note that only four quantities are needed to specify one pair of voltages 
or currents if the other pair is known. In some cases fewer than the four 
quantities will suffice. Each of the parameter sets leads directly to an 
equivalent circuit, as shown in Fig. 2-2. Note that the hybrid parameters 
have mixed dimensions: hn = ohms, h22 = mhos, while hi2 and /i2i are 
dimensionless voltage and current ratios, respectively. 

The z's are also known as the open-circuit impedance parameters because 
open-circuiting the 2-2 terminals makes I 2 = 0 ; then 

Z N = 

Z 2 I 

H 

YI 

HI 

I 2 = 0 

Likewise opening the 1-1 terminals (making I X 

H 

h 

0 ) gives 

z 1 2 = 

Z22 

H = 0 

(2-7) 

(2-8) 

(2-9) 

(2-10) 
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(a) 

I + 

.022111 _l 

Ii 

+ t 
VI I-

(0 
h 12 V2 

+ 

Fig. 2-2 Equivalent circuits for the two-port parameters, (a) z parameters. (6) 
parameters, (c) A parameters. 

The h's, however, may be found by short-circuiting the 2-2 terminals and 
opening the 1-1 terminals, 

hi 

hi 

h2 

hi 

X± 
h 
h 

h -

Yi 

h 
v2J 

Vo = 0 

h = 0 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

This parameter set will be found to be useful in transistor measurements, 
for the necessary open- and short-circuit terminations can be well approx­
imated over wide frequency ranges. 

The y's are a set of short-circuit parameters, for a similar set of relations 
may be written when V2 and Vi are, respectively, set to zero instead of I2 

and 11. 
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The use of one set of parameters is no more or less accurate than the use 
of another. However, the precision of physical measurement of one set or 
another varies considerably. Also, one set may lead to a simpler representa­
tion than another set, thus leading to simpler circuit calculations. Hence, 
in the following equivalent-circuit representations of an active device, no 
attempt will be made to express the representation in all possible forms; 
rather, the forms most easily understood from a physical point of view and 
those easiest to use will be discussed. 

2-2 R e p r e s e n t a t i o n of V a c u u m T u b e s a t L o w F r e q u e n c i e s . 1 

From the analysis point of view it does not matter whether the tube shown 
in Fig. 2-3 is a triode, tetrode, or pentode, for only the two-ports are 

lo-

Plate 

Grid 
+ 
- o2 

! + v 2 

v 1 = v g 

i Cathode 
(a) t -

lo 
(K) c - o 2 

GO 

+ 

l o -

- o 2 

1 r w • 

r - - o 2 

Fig. 2-3 (o) Generalized negative-grid vacuum tube at low frequencies. (6) Its repre­
sentation by y parameters, (c) The relation to the graphical characteristics of the tube. 

important; all other electrodes are at ground potential for a-c voltages. 
Hence any of the circuit parameters defined in (2-1) through (2-6) could be 
used to describe the small-signal properties of the tube. In Fig. 2-3& the 

1 Frequencies low enough for tube capacitances to be neglected. 
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Fig. 2-4 Alternative equivalent circuits for pentode or triode. 

triodes the range is 1 to 100 kilohms for rp and 5 to 100 for /x. In pentodes 
typical values are 1,000 to 20 ,000 /nmhos for gm and 100 kilohms to several 
megohms for rp. 

Note that, although the equivalent circuits are shown as two-port net­
works, this is not necessary. Any one of the three terminals may be 
considered common, but if necessary, all three terminals may be above 
ground. The only precaution is observing that Vg is always measured on 
the grid with respect to the cathode.1 

2-3 Representation of a Transistor at Low Frequencies. The 
choice of an equivalent circuit for the junction transistor at low frequencies 
is complicated by the large number of such circuits which are both possible 
and useful. We shall start, then, with a very simple circuit which can be 
related to the terminal properties of the device and which can be elaborated 
to include all the major low-frequency effects. The resulting more com­
plicated circuit can be related to the physics of the device and will be useful 

1 For example, if the grid is the common terminal, then Vg = —V\; for the plate as 
the common terminal, Ve = V\ — V^. 

y parameters are used to represent the tube. Since Jj = 0 in a negatively-
biased tube at low frequencies, yn and yi2 have disappeared, y2i is seen to 
be the more familiar quantity gm, and y22 is the reciprocal of the plate 
resistance, rp. The quantities gm and rp are constant with respect to the 
voltages and currents only if these make small excursions about an operat­
ing point; i.e., these parameters provide only a small-signal representation 
because of the inherent nonlinearities of the tube. Both gm and rp are 
functions of the operating point of the tube, specified as F&, Vc, and 
(In the case of a multigrid tube, the d-c grid potentials are specified as Vcl, 
Vc2, etc., for grids 1 and 2, respectively.) 

The Thevenin equivalent of the circuit of Fig. 2-36 shown in Fig. 2-4b is 
equally valid. The circuit of Fig. 2-4a is usually associated with pentodes, 
while that of Fig. 2-4b is associated with triodes, for the magnitudes of gm, 
rp, and n lead to useful approximations with these associations. For small 
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later when high-frequency effects will be included. The CIRCUIT also CAN be 
easily related to the general circuit parameters (z's) so that a tie between 
the theory of the device and the network parameters is illustrated. 

If the common-base characteristics of an NPN transistor 1 (Fig. 2-5) are 
inspected, the collector current is seen to be almost independent of collector 
voltage (on the assumption that operation is restricted to the linear region, 

(a) 

J C, MA 

4 / E = - 4 M A 

/ 
t 3 

- 3 

\> 
M 

? -
ILL 1 

- 2 
\> 
M 

? -
ILL 1 

- 1 

f 
, 0 0 

- 0 . 5 + 5 + 10V VCB 

VEB - 0 . 5 V 

IE 
E r 

VEB 

B 

(c) 

Fig. 2-5 Common-base iVPjV-transistor terminal characteristics. 

Vcb > 0) 2 and proportional to emitter current. A (thange of AI^ gives a 
collector current change of a' AIE, where a' represents the fraction of 
emitter current that reaches the collector. The a' (parameter commonly 

s; however, the discussion 
electron" and "hole" and 

1 The following discussion will be in terms of NPN transisti 
is applicable to PNP transistors by interchanging the words 
reversing the direction of all voltages and currents. 

2 The following notation regarding currents and voltages will be used: Capital letters 
and subscripts indicate static or d-c values—Ig, VBE, etc.; capital letters and lower-case 
subscripts are a-c, root-mean-square (rms) values for time-varying signals—ib, Vhe, etc.; 
lower-case letters and subscripts represent instantaneous values of the varying compo­
nents—%, Vbe, etc. See IRE Standards on Letter Symbols for Semiconductor Devices, 
1956, Proc. IRE, vol. 44, pp. 934-937, July, 1956. 
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ranges between 0.9 and 1.0 and is proportional to (1) the emitter efficiency 
(the fraction of emitter current that is carried by electrons into the base 
region), (2) the transport factor (the fraction of electrons emitted into the 
base region that reach the collector), and (3) the collector multiplication 
factor (the ratio of the electrons entering the collector region to those 
reaching the collector). The first two factors are less than 1, whereas the 
collector multiplication factor may be larger than unity, particularly at 
high collector-to-base voltages. 

In the emitter-base circuit relatively high currents flow with small applied 
voltages; hence the emitter must represent a rather small (and nonlinear 
because of the curvature of the emitter characteristic) resistance. At a 
given operating point (JE, VEB) the emitter characteristic may be rep­
resented by a linear resistance r; n which has a value 

dVBB 

Tin = — — (2-15) dig 
The quantities r;n and a' lead to the simplest representation of the transistor 
shown in Fig. 2-6. Although this transistor equivalent is the most rudimen­
tary, it is nonetheless useful for rough j „i1 / _/ 
calculations of many circuits. How- ge

0 f o C 

ever, certain imperfections in the circuit j + I + j 
are noticeable from a closer inspection yeb > r a'lC^\ v 
of the transistor terminal characteristics: i < '" Sr \ 
these are that the collector current So^——l o 
curves are not absolutely independent 
of the collector voltage-the collector F i g " 2 ' 6

 +. T h e s i m p l e s t t r a n s i s t o r 

,. . , . representation, 
current increases very slightly with in­
creasing collector voltage—and the input voltage VEB decreases very 
slightly with increasing VCB and constant Is- The change in Ic with 
changing VCB can be taken into account with a shunt conductance across 
the current generator of value g = dlc/dVcs- The change in VEB with 
changing VCB can be accounted for by adding a voltage generator which 
is controlled by VCB in series with rin. The value of this generator is 
ix = dVEB/dVcB- The addition of g and n to the equivalent circuit of 
Fig. 2-6 gives the circuit of Fig. 2-7, which is identical to the /i-parameter 
equivalent circuit shown in Fig. 2-2c. Consequently the previously de­
fined parameters become, in the A-parameter notation, 

hllb = rjn (2-16) 

= a (2-17) 

hat = A* (2-18) 

^226 = g (2-19) 
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The third subscript b indicates the common terminal of the transistor, in 
this case the base. All four of these parameters can be found from the 
graphical characteristics, but only with limited accuracy. Alternatively, 
small-signal a-c measurements can be used. (See Sec. 15-3.) 

This equivalent circuit is very similar in form to an equivalent circuit 
which may be derived from the physical theory of the transistor 1 and which 

Eo t + 
rm = ft 116 

I-
Bo-

h 126 V2 

*'J'= (T) 

Jc = I2   

O C 
+ ' 

. g = 
> ho?h 

Fig. 2-7 A modification of the simple equivalent circuit (cf. Figs. 2-2c and 2-6). 

is shown in Fig. 2-8. The portion which is drawn in solid lines represents 
the intrinsic transistor, i.e., an ideal transistor which is assumed to have 
zero ohmic resistance, particularly in the base region. Because of the 
actual base resistance r'b the complete transistor may have terminal char­
acteristics (i.e., parameters) which differ markedly from the intrinsic tran­
sistor. The identification of each parameter in Fig. 2-8 is: 

r'e The incremental resistance of the emitter-base diode. This is approx­
imately equal to kT/qls, where k is Boltzmann's constant, T is the 
junction temperature in degrees Kelvin, and q is the electronic charge. 

E o 
i + 

V e 6 

Bo-

Fig. 2-8 A model of the junction transistor based upon the theory of the device. 

At room temperature r'e = 25/Is, where r'e is in ohms and IE is in 
milliamperes. 

a' The fraction of the incremental emitter current which arrives at the 
collector in the intrinsic transistor. (Note that this is not quite 
AIC/AIE for the whole transistor because of the resistances r'b and r'c.) 

1 J. M. Early, Effects of Space-charge Layer Widening in Junction Transistors, Proc. 

I R E , vol. 40, p. 1401, November, 1952. 
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r'c The incremental collector resistance. This arises because increasing 
the collector voltage increases the width of the depletion region sur­
rounding the collector junction. In turn this causes the effective 
width of the base region to decrease. The change in base width 
caused by changes in V'C is called base-width modulation. The de­
creased base width caused by increased V'C reduces the current lost in 
the base, thereby slightly increasing the collector current. This is a 
small effect, so that the resistance r'c is typically several megohms. 

fiec The fiECV'C generator represents the reverse transfer through the 
transistor, i.e., the effect that output voltage has on the input. This 
generator is also a consequence of base-width modulation: the de­
creased base width caused by increased V'C in this case very slightly 
affects the emitter diode, giving a reduced value of VEB for the con­
stant IE. This is also a small but not always negligible effect. Typical 
values of nec are 1 0 - 3 to 10~ 4. 

In each case an equation can be written which expresses the circuit 
constant in terms of the physical properties of the device. Hence one 
important function of this circuit is that it gives a link between device 
theory and circuit theory which is not provided by the general circuit 
parameters. 

In addition to the preceding intrinsic transistor parameters each region 
of the transistor possesses an ohmic resistance to current flow. In the usual 
transistor only the base resistance r'b is of importance; this is included as a 
dotted resistor in Fig. 2-8 to emphasize that it is not a part of the intrinsic 
transistor. The resistance r'b is sometimes called the base spreading re­
sistance or the extrinsic base resistance. Since r£ is really a distributed 

(a) 

Fig. 2-9 T equivalent circuits with Ie as the control parameter. 
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resistance which is only approximated by a single, lumped value, it does 
not exactly represent the effects of the actual base resistance. However, 
the approximation is good in most cases, with the possible exception of 
grown-junction transistors at high frequencies. 

2-4 The T Equivalent Circuits. The circuit shown in Fig. 2-8, while 
perfectly valid at low frequencies, has five quantities which define the four 
current and voltage variables. Since, in general, only four constants are 
necessary, the extra constant represents an unnecessary complication. A 
very commonly used equivalent circuit is the T equivalent circuit shown in 
Fig. 2-9a. Several equivalent forms of this circuit may be made, one of 
which is shown in Fig. 2-9b. The values for this circuit are related to those 
of the circuit of Fig. 2-8 by the equations 1 

Tb = r'b + HecK (2-20) 

Tc = r'c(l - Meo) £S r'c (2-21) 

re = K — ItecO- - « 'K (2-22) 

a 
_ a' - „ e c _ ^ 

1 — Mec 
(2-22o) 

1 The transformation from one equivalent circuit to another may be accomplished in 
many ways; however, some ways are much simpler than others. To illustrate a simple 
procedure for this case, consider applying unit current (h = 1 ) to the output terminals 
of Figs. 2-9a and 2-8. For the circuits to be equivalent, the resulting voltages V\ and 
Vi must be equal, 

Vt = Vn + rc) = (ri + r'c)l 

Vi = lfo) = (ri + M«4)l (2-20) 

(Note that V'c = \r'c.) Therefore 

r c = r'c(l - M e c ) 3* r'e (2-21) 

(Usually nec « 1.) Now apply unit current to the input terminals (/i = 1 ) , and equate 
the resulting V\ and Vi in each case, 

Vi = l(r« + n) = + rl + neca'r'c)X 

(Note that V'c = a'r'cIh) Substituting for n, we get 

re = r'e - Mec(l - a')r'c (2-22) 
Vi = l(rb + arc) = (r'„ + a'r'c)l 

Substituting for r& and rc ,we obtain 

a' — Mec , 
1 - , 

(2-22a) 

Other ways of accomplishing the desired transformation can be easily shown to be con­
siderably more complicated. In this case the z parameters have been equated; each 
quantity times a 1 is actually a z parameter; for example, n + r c = Z22&-
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200 

1 I 1 1 1 1—I M i l l 1 1 1 1—I I I I I I 
0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10 

4 , MA 

Fig. 2-10 Parameters of a typical transistor as a function of emitter current (transistor 
type 2N123 with VCB = - 5 volts). 

four parameters, for in later work approximations will often be made which 
are valid only if the parameters have certain values. For example, if a 
small load resistance is connected from collector to base, the resistance rc 

may often be neglected. In this case the qualification for the word "small" 
is that RL, the load, must be much smaller than the several megohms of rc. 

Although all the discussion to this point has shown the transistor con­
nected in the common-base configuration, this does not imply that the 

Note that a ^ a' and r'c rc but that rb ^ r'b and re ^ r'e. Actually re is 
about half ~?e; that is, re ^¥T/2qIE = 13/IE (Is in milliamperes). The 
resistance rb is considerably larger than 

The parameters of the T equivalent are functions of the operating point 
of the transistor to varying degrees. Typical variations of the values of re, 
rb, rc, and a with emitter current and collector voltage are shown in Figs. 
2-10 and 2-11. Careful note should be taken of typical values for these 
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Fig. 2-11 Parameters of a typical transistor as a function of collector voltage (tran­
sistor type 2N123 with IE = 1 ma). 

Bo-

B o -

< 
l - a b 

- o C Bo V A -
rGh 

r c ( l - « ) 

-OC 

Eo~ 
[a) 

Bo-

C o -

< -OE Bo V W AAA—OE 

Fig. 2-12 Equivalent circuits with base current as the control current, (a) Drawn in 
the common-emitter configuration. (6) Drawn in the common-base configuration. 
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o c 

E o 
Fig. 2-13 Circuit for finding hue and hzu in terms of the T parameters. 

transformations are necessary to go from, say, common-base to common-
collector parameters. The one new parameter which does arise in Fig. 
2-12 is 1 

A u 

= ho 
4 A (2-23) 

This quantity arises so often that it is given a special name, 0. 
One difficulty with the T equivalent circuit is that the important param­

eters cannot be measured directly because the internal node is inaccessible. 
On the other hand the hybrid parameters can be easily measured, as shown 
in Chap. 15, Amplifier Measurements. Therefore, the equivalences between 
the h's and the T equivalent circuit are useful.2'3 

'Two systems of ^-parameter notation are in common use. These are: hu s hi, 
hu s hr, hu = hf, and /»22 = h0. The subscripts stand for input, reverse, forward, and 
output, respectively. The second subscript is then used to denote the common terminal; 
hence, h/b is the parameter foia- The equivalences are also shown in Table 2-1. 

2 The relations needed to go from quantities measured in terms of h parameters to the 
T equivalents are in Chap. 15 on Amplifier Measurements, since it is in this connection 
that the relations are usually needed. 

8 A simple method to find hiu and hi\e is to short-circuit the output terminals of the 
T as shown in Fig. 2-13 and apply an input current, lb-

Vbe = hhiu = hn + Va since Vce = 0 (2-24) 

transistor must be used in that way or, indeed, that the equivalent circuits 
are valid only in that configuration. The T equivalent, or example, is 
equally valid with any terminal grounded or even with none grounded; 
however, for the common-emitter and common-collector configurations 
(Fig. 2-12a and 6), it is often more convenient to have the controlled cur­
rent generator a function of the input, or base, current rather than of the 
emitter current. The circuits in this figure can be easily derived by noting 
that l e + h + h = 0. One convenient property of these T equivalent 
circuits is that once the parameters are known for one configuration they 
are known for all, whereas with the two-port parameters more complicated 
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-1 rrre + r c (l - a) 

i , r " r c 

Aii« = »•& + 
re + r c (l — a) 

S r t + for re «rc(l - « ) (2-26) 
1 — a 

Ic « V„ 
«21e = — = 

lb 1 — a r c (l — a) 
rerc 

1 - a [r. + r c (l - a)][rc(l - a)] 
(2-27) 

fau £J U « r c ( l - a) (2-28) 
1 — a 

kne and feue are found by opening the 1-1 terminals and applying a voltage to the 2-2 
terminals. Then 

/ 1 1 
hne = -p = — r~- S — r since / » = 0 (2-29) Vi r c (l — a) +re rc(l — a) 

H » ° " I F " — ? - n° % (2-30) 

Vi re + rc(i - a) r c (l - o ) 

The h parameters for all the configurations of the transistor are tabulated 
in Table 2-1. (The second subscript gives the common terminal; that is, 
An!, is the input impedance with the base grounded.) In addition, typical 
values of the parameters for a small transistor operating at IE = 0.5 ma are 
given. One important point to note in Table 2-1 is the approximations 
which are made to give the approximate equations. As shown in Eqs. (2-29) 
and (2-30), re « r c ( l — a) is the condition which must be fulfilled for the 
approximate equations to be valid; this condition is usually well fulfilled, 
since re is typically about three orders of magnitude smaller than r c ( l — a). 

2 - 5 R e p r e s e n t a t i o n o f t h e V a c u u m T u b e a t H i g h F r e q u e n c i e s . 
Two somewhat different approaches may be taken to represent a vacuum 
tube for circuit purposes at high frequencies. The first is to take the low-
frequency equivalent circuit (such as that of Fig. 2-4) and simply add the 
lumped parameters (L, R, and C) to the external terminals to account for 
the effects of leads, interelectrode capacitances, etc., and then to make a 
first-order approximation with an additional lumped element(s) for the 
effects due to the electron stream in the tube. A second approach is to 
think of the tube simply as a two-port network and measure the two-port 
network parameters—a convenient set at high frequencies being the short-
circuit admittance parameters (yn, etc.). The latter approach has the 
advantage of giving results easily applied to a single-frequency network 
solution but has the disadvantage that measurements must usually be made 
over the range of frequencies of interest, thereby necessitating many 
measurements. Also, the latter method gives little insight into the physical 
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Table 2-1 * 

Exact equations Approximate 
equations Typical values 

7*1161 , - A) 
I. f = T e + 
HA > N + RC 

HM] _ N 

KB L N + RC 

H2IB) RB(L - A) 
> = —A 

H/B ) RB +RC 

H<M 1 1 
HOB 1 RC + N 

= R,+ N(L — A) 

~ N 

~ RC 

== —A 

~ 1 
~RC 

35 ohms 

2 X 1 0 - 4 

- 0 . 9 8 

0.4 jumho 

HUF \ _ R | R,RC 

HIE 1 RE + RC(\ — A) 

H\2E\ _ RE 

HRE 1 RC(\ — A) + RE 

HUE] A R#C 

~ J- T ' 
1 — A 

RE 

~ RC(L - A) 

A 

1,750 ohms 

5 X 1 0 - 4 

49 

20 jumhos 

H/E J ~~ 1 - A [RE + RC{\ - A)][RE (1 -A)} 

H22E] 1 

H0E 1 RC(L — A) + RE 

1 
~RC(L - A) 

1,750 ohms 

5 X 1 0 - 4 

49 

20 jumhos 

HUC\ _ R ^ V . 
KE 1 RE + RC(L - A) 

HUE] _ (1 - A)RE 

KC 1 RE + (1 — A)RC 

HIIE\ —RC 

HFC 1 RE + RC(L - A) 

HUE 1 _ 1 

KC 1 RE + r c(l — A) 

~ _ L T E 

1 — A 

SI 1 

- 1 
— 1 - A ~ 

1 
— RC(\ — a) 

1,750 ohms 

1 

- 5 0 

20 Mmhos 

* Values are computed for RC = 2.5 megohms, = 500 ohms, RT = 25 ohms, and 
A = 0.98. 

behavior of the tube unless the admittances are carefully interpreted. The 
method is nevertheless valuable at uhf and microwave frequencies, where 
the concepts of leads, voltages, and currents tend to become ambiguous.1 

For the areas covered herein the first approach seems most fruitful, and 
it will be developed here. Figure 2-14a shows that a lumped 2 approxima-

1 L . C. Peterson, Equivalent Circuits of Linear Active Four-terminal Networks, BELL 

SYSTEM TECH. J., vol. 27, no. 4, p. 593, October, 1948. 
2 By lumped is meant the representation of a distributed circuit by a finite number of 

inductors, capacitors, etc.; e.g., a lead wire into a tube is really a transmission line and 
therefore cannot be exactly represented by a single inductor. The approximation is 
excellent, however, as long as the lead is very short compared with a wavelength at the 
highest frequency considered. 
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tion to the tube, exclusive of effects due to the electron stream, would 
have an inductance in series with each electrode caused by the inductance 
of the lead wires and a capacitor representing the capacitance between that 
electrode and each of the other electrodes. Thus, in the triode tube there 
are three inductors and three capacitors; these may be superimposed upon 
the low-frequency equivalent circuit with the result shown in Fig. 2-146. 
T h e resulting circuit is more complicated than necessary except at very 
high frequencies. At medium frequencies, say to 20 or 30 Mc, the induct­
ances have relatively little effect in small receiving tubes, and the important 
elements are the interelectrode capacitances; therefore the circuit can be 
simplified to contain only the three capacitors, together with u and rp* 

Fig. 2-14 Triode h-f equivalent circuits. 

One important effect caused by the small lead inductances, however, is that 
a circuit which operates normally at low frequencies may oscillate at very 
high frequencies where the lead inductances begin to have appreciable re­
actance. A simple example of the causes of such an effect is given in Prob. 
2-7. 

The situation in the case of the pentode is similar, but complicated by 
the addition of the two extra electrodes. Figure 2-15 shows the major 
reactances of interest. Some of those associated with the suppressor grid 
are not shown, for they have little effect. Although all shown may become 
of interest at very high frequencies, the circuit is usually simplified as 
shown in Fig. 2-156 for medium-frequency use. Here the inductances are 
ignored, and the screen is assumed to be at a-c ground potential. Hence 
Cin = C g l f c + Cglg2 (since CgiP « C i n) and C o u t = Cpg3 + Cpg2. The feed­
back capacitor CgiP is included in the equivalent circuit, but it may some-

* Note that the inductances shown, for example, LK, if in the grounded lead particu­
larly, should include the inductance of the external lead from the tube to the ground 
plane. This fact is important both in calculations and in physical layout, since a long 
ground lead or a bypass capacitor with series inductance may greatly increase the total 
effective lead inductance. 
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times be neglected if the voltage gain of the stage is low. In the pentode the 
first inductance likely to become important as frequency increases is the 
cathode lead inductance. The effect of this inductance may be represented 
by means of a frequency-dependent conductance, which is discussed in con­
nection with transit-time loading. The capacitances in either the triode 
or the pentode are affected by the space charge in the tube; hence the 

STSGV—OG2 

(screen) 

Fig. 2-15 High-frequency equivalent circuits for the pentode. 

capacitances are dependent upon the d-c operating point of the tube. The 
capacitance most affected by change in operating point is Cgk (or C;n in the 
case of the pentode). The other capacitances are practically independent 
of the operating point of the tube. Since thejnput capacitance forms an 
important part of the grid tuned circuit in a high-frequency amplifier, the 
variation of input capacitance with operating point can cause serious detun-
ijigjf the operating point is varied to provide gain control.1 A reduction of 
this effect may be obtained by adding a small unbypassed cathode resistor; 
however, this resistor also reduces the gain since the effective transcon-
ductance becomes „ 

1 For data see F. Langford-Smith, "Radiotron Designer's Handbook," 4th ed., sec. 
23.5, Radio Corporation of America, New York, 1952. 
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At low frequencies the input admittance of a v a c u u m t u b e is essentially 
a purely capacitive susceptance; however, at higher frequencies a con­
ductance component becomes important. This component arises from three 
major sources. First, there is some dielectric loss associated with the 
insulators in the base and interior of the tube. This conductance varies 
directly (approximately) with frequency. Second, there is a conductance 
due to the finite transit time of electrons past the control grid. This 
component of input conductance varies with the square of frequency. 

(a) B t = l / « £ s 

(b) 

(c) 
Fig. 2-16 Equivalent circuit for the calculation of input conductance due to cathode 
lead inductance. 

Third, there is a component which is caused by the cathode lead inductance. 
The value of this component may be calculated with the aid of the circuit 
shown in Fig. 2-16. 

The equation for the input loop (Fig. 2-166) is 

= A 
H 

Fx 

„ H . H + 9MVG j / 1 = _ _ (. 

- Y11 -

-jBk 

BgkBk 

and V<, 

-jBk -f- jBek + 
Usually Bk y>> Bgk, so that Eq. (2-33) may be simplified. 

Bk 

1K 

(2-32) 

(2-33) 

GK • -jBk + g-, 
F n ^jaCek + gmu,2CskLk + 

(2-34) 

(2-35) 
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The higher-order terms may usually be ignored because gm/Bk <5C 1. The 
last equation shows that the input admittance due to Cgk and Lk may be 
represented by the parallel combination of Cgk and a conductance of value 
gmu2CgkLk connected between grid and ground, as shown in Fig. 2-16c. 

Because the conductances due both to transit time and to Lk vary as 
frequency squared, it is difficult to measure experimentally the two effects 
separately. Consequently, the two are usually lumped together, and the 
total input conductance is expressed in the empirical relation 

gi = hf+hf (2-36) 

where g, = total input conductance 
kcf = "cold" input conductance (heater power off) 

khf2 = "hot" input conductance (due to transit time and Lk) 
Values for k^ for some modern triodes are given in Chap. 13.1 The complete 
pentode equivalent circuit for high frequencies is then that of Fig. 2-15, 
where Cin = Cglii + Cglk, as before, and gt is given by Eq. (2-36). The 
preceding has assumed that the screen lead inductance is negligible. Above 
100 Mc this may not be true, especially if care is not taken in bypassing 
the screen to ground through a capacitor. The effect of the inductance is 
to cause a negative input conductance to appear from the control grid to 
ground. Uncontrolled, this effect may lead to oscillation, but the effect is 
sometimes used to reduce excessive grid loading at very high frequencies.2 

2 - 6 H I G H - F R E Q U E N C Y E Q U I V A L E N T C I R C U I T S FOR T R A N S I S T O R S . The 

simple "low-frequency" equivalent circuits for transistors thus far pre­
sented are valid up to frequencies of only a few kilocycles for audio tran­
sistors to frequencies of perhaps a megacycle or more for transistors useful 
in the vhf range. The basic limitation to transistor action at high 
frequencies is the relatively low velocity of the current carriers, which leads 
to transit-time effects at relatively low frequencies compared with vacuum 
tubes, including a large part of the useful frequency spectrum of the 
transistor. As has been seen in the case of the vacuum tube, an equivalent 
circuit which even approximately takes into account the effects of transit 
time is relatively complicated. The same is true for the transistor; for this 
reason we shall not attempt to make an "exact" equivalent circuit, if 
indeed this is possible, but rather we shall attempt to find several useful, 
relatively simple equivalent circuits which reasonably well represent the 
operation of the transistor in the type of operation under consideration. The 
latter point is very important because, for example, a representation that 
is perfectly adequate for a video amplifier calculation may be very poor for 
a 456-kc intermediate-frequency amplifier. 

1 For values for older tubes, see ibid., p. 929. 
8 Problem 2-7 illustrates the calculation of this effect in a triode tube. The effect in 

the pentode is the same if the pentode screen is treated as the triode plate. 
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A simple picture of the problem caused by the transit time in a transistor 
may be derived by considering the processes taking place in the base of a 
transistor when a very narrow pulse (ideally, an impulse) of current is sup­
plied to the emitter. At the initial instant the electron density (in an NPN 
unit) in the base at the edge of the emitter junction is increased. Ideally 
this increased density would travel from emitter to collector with unchanged 
form, but at a finite velocity. The time for the pulse to travel from emitter 
to collector is the transit time in question. If the pulse arrived with the 
same shape with which it began, there would be no frequency problems to 
worry about—the transistor would have acted as an ideal delay line of 
infinite bandwidth. However, the mechanism of carrier propagation in the 
base is, at least in part, a diffusion process. This is analogous to the process 
of heat flow in a metal. If one momentarily touches a hot object to the end 
of a metal rod, the hot spot will slowly move down the rod, but while the 
hot spot is of zero length in the beginning, the spot begins to broaden out 
as it travels down the rod. The same is true of the distribution of electrons 
in the base: initially the distribution is very narrow, corresponding to the 
narrow input-pulse length; as the electrons diffuse across the base, their 
random velocities cause the distribution to broaden—the longer the transit 
time, the more the broadening. In Fig. 2-17 is shown the result of the 
process; the input pulse is square and narrow, but the output pulse has 
nonzero rise time and a rounded shape. The rounding of the output cur­
rent pulse shows that some of the high frequencies of the original pulse have 
been lost; i.e., the current gain of a transistor falls off at high frequencies. 
It may be seen from this qualitative discussion that the high-frequency 
response could be improved by anything which would reduce the transit 
time, since this would decrease the spreading of the pulse. Two things may 
be done to accomplish transit-time reduction. One is to narrow the width 
of the base—the current gain times bandwidth is inversely proportional to 
the square of the base width. Second, the velocity of the carriers in the 
base can be increased by arranging the impurities in the base region in such 
a way that an electric field is set up to increase the velocity of the minority 
carriers (electrons) through the base, as in a drift or graded-base transistor. 

An expression for the current gain a' as a function of frequency may be 
derived from the theory of the transistor; however, the expression involves 
transcendental functions and is thus not convenient for representation with 
a lumped network. Instead a simplified form can be used, 

a'O'w) = 
1 + ju/ua 

(2-37) 

where a'0 is the low-frequency value of Ic/Ie. The function e i°'T has unity 
magnitude and thus does not affect the magnitude of a, which is a'0/ \/2 at 
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INPUT 4 
CURRENT ' 

OUTPUT 
CURRENT 

I, 

TRANSIT , 
TIME 

A 
Fig. 2-17 The effect of transit time and diffusion on the short-circuit current output of 
a transistor. 

The function e~^T represents a phase shift proportional to frequency or, 
in the time domain, a pure time delay T. The relative size of T depends 
on the type of transistor. For a simple junction transistor T ~ 0.2/wa and 
is often neglected; in a drift transistor T is much more important and may 
be l /CO A or more. Note that T = l /CO A gives a phase shift in the numerator 

Odb 

Fig. 2-18 <*' versus frequency. 

of Eq. (2-37) of 1 radian at on = o>a, or a total phase shift in a' of 1 + ir/4 
radians. The phase of a is plotted in Fig. 2-18 for two values of T. 

The frequency dependence of alpha given in Eq. (2-37) may be incor­
porated into the equivalent circuit of Fig. 2-8 resulting in a frequency-
dependent current generator a'Ie. The reverse transfer generator tiECVC 

has a similar frequency dependence, since it also depends upon effects trans-

w = Wa = 2irfa. The frequency fa is usually called the alpha-cutoff fre­
quency. The magnitude and phase of a' are plotted as a function of fre­
quency in Fig. 2-18. In this figure the logarithm of \a'\ is plotted with a 
logarithmic frequency scale. 
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mitted through the base region; however, the effect of this generator is 
nearly always negligible at high frequencies, as will be shown. 

The flow of emitter current results in a distribution of carriers in the 
base region. This distribution cannot be altered instantaneously because 
of the previously mentioned transit-time effects. Hence a sudden change 
in emitter current gives rise to a gradual change in the charge distribution 
in the base. The initial change in emitter current must first change the 
charge distribution at the emitter-base junction. This effect may be 
approximated by placing a capacitor of value l/OIAR'E

 m parallel with R'E 

Eo-

BO 1 : O 

Fig. 2-19 The T equivalent circuit for high frequencies. 

(Figs. 2-8 and 2-19). This capacitor is generally called the emitter diffusion 
capacitance. 

One other effect of major importance in transistor frequency response 
arises from the space-charge region existing at the reverse-biased collector-
base junction. In this region the junction field removes the carriers, leaving 
behind the fixed charges of impurity atoms fixed in the crystal lattice. The 
amount of fixed charges exposed on each side of the junction must satisfy 
Poisson's equation for the amount of potential across the junction. Thus 
an increasing potential widens the space-charge region to expose more fixed 
charges and gives rise to a current of electrons from the n region and holes 
from the p region. This current is a displacement current similar to the 
current to a capacitor when an increasing potential is applied. Consequently 
the effect of the space-charge region is approximated in the equivalent 
circuit by means of the capacitor Cc (Fig. 2-19). 

The collector capacitance depends principally upon the area of the 
junction and on the density of impurities present on either side of the 
junction. Because of the space-charge layer-widening effect, the outer 
boundaries of the space-charge region move farther apart as the reverse bias 
is increased. Since incremental increases and decreases of charge occur at 
the outer boundaries, this means that the incremental capacitance Cc 

decreases with an increase in reverse bias. Effectively, the "plates" of the 
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Fig. 2-20 The T equivalent with C e lumped with 1 /war'e. Here ua is the measured cutoff 
frequency and includes the effect of C e . 

capacitor are moved farther apart. Collector capacitance of typical small 
transistors may range from 10 to 30 pf for alloy-type units; most drift 
transistors usually have considerably smaller capacities, 2 to 10 pf being 
representative. Special types of construction can result in Cc < 1 pf; in 
this range, attention must be paid to mounting structure and lead capac­
itance as well, which can be appreciably larger. In the remainder of the 
discussion, however, it will be assumed that any parasitic lead capacities, 
etc., are negligible or else lumped with Cc. 

A similar space-charge layer capacitance exists at the emitter junction, 
shown in Fig. 2-19 as Ce. The principal effect of this capacitance is to 
divert to the base lead some of the emitter current that would otherwise 
have flowed through the base to the collector by means of the minority 
carriers. A portion of IE flows through Ce, leaving a fraction I'E which 
controls the collector current generator a'I'E. The effect of Ce is thus to 
lower the effective alpha-cutoff frequency as measured at the terminals of 
the transistor. The amount of the decrease is small in many transistors 
because the impedance of Ce is large compared with the low impedance of 
r[ in parallel with l/war'e; however, in very-high-frequency units where the 
capacitance \/war'e is small and comparable to Ce, an appreciable fraction 
of IE is diverted to the base, and the effect of Ce cannot be ignored. Note 
that the a-c impedance of r'e in parallel with \/war'e is inversely proportional 
to the direct current IE ', consequently there is some advantage to operating 
at a reasonably high d-c emitter'current to make I'JIE as large as possible. 

If the frequency wa appearing in Eq. (2-37) and in the expression for 
emitter diffusion capacitance is understood to be the effective alpha-cutoff 
frequency, the effects of both Ce and transit time across the base being 
taken into account, then Ce need not be considered separately; that is, Ce 

is lumped into the capacitance l/war'„ as in Fig. 2-20, where wa is essentially 
the alpha-cutoff frequency measured for the complete device. 

The resulting T equivalent circuit shown in Fig. 2-20 is more detailed 
than is really needed for most high-frequency applications. Calculation of 
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the H parameters for this circuit is one way to show what approximations 
may be made and the restrictions on their validity. In Fig. 2-21 HUB and 
H2\B may be found by assuming a known value of IE. Define 

RC 

Then 

1 + jur'CCC 

Z ± RE 

1 +jw/«a 

V'C -(L-A')IE~ 
R'BZC 

(2-38) 

(2-39) 

(2-40) 

(2-41) 

RI + ZC 

= — IE{\ — A')RI since ZC R\>, usually 

V1 = ZJE + HECV'C - V'C 

S ZJE — V'C since NEC « 1 

VI 

HIB = — = Z, + H(l - A') 

H , V'C ; (1 -
HIB = - = - < * + — = - « -

i i r& + Z c 

S - a ' (2-42) 

In using the above expressions it must be remembered that a' is now a 
function of frequency. If the value of HUB is desired, the value of A' with 
e-jo>T = 1 _ JWT + (JUF)2/2 H can be substituted into Eq. 
(2-41), 

«6(1 - jwT)' 
HUB = ZE -\- R'B 1 -

1 + jco/a>a 

= ZE + N(L - AQ , (2-43) 
1 + ,?w/«a 

£ 0 - + a <?c 

7 + 

B o-

|v2=o 

Fig. 2-21 Circuit for finding the high-frequency value of HUB and 7I2I(>. 



SEC. 6] HIGH-FHEQUENCY EQUIVALENT CIRCUITS FOR TRANSISTORS 31 

From the last equation hub can be shown to be the impedance Ze in 
series with an RL parallel circuit, as shown in Fig. 2-22. Note that the 
impedance hnb (and the actual input impedance if the load impedance in 
the collector is small) is inductive over a considerable frequency range; 
that is, | An 61 increases with frequency from approximately 

1 -
1/wa + Ol'0T 

to CC = C0a. 
The quantities h22b and hi2b may be obtained by inspection from Fig. 

2-20, 
h22b 

1 1 1 +j*rtCe 

rc 

if co » 
1 

Zc + ri 

The calculation of hi2b is facilitated if one assumes that V2 • 

h\2b V-tc + 
n + z, + 

+ Jo>r'bCc 

Am = ~ +jarfic 

S jwrbCc if co » 

(2-44) 

V'e; then 

(2-45) 

(2-46) 

(2-47) 

E o 

The approximate form h22b=ju>Cc is useful if one is interested in the 
high-frequency performance where the capacitive reactance is much less 
than r'c. Also, the load impedance appears 
directly in parallel with h22b, and this must 
be much smaller than r'c if the transistor 
collector circuit is not to be the limitation 
on the high-frequency response. With low 
load impedances the effect of r'c is negligible 
at all frequencies. 

The approximate form for h12b shows that 
it is constant at low frequencies and then 
increases linearly with frequency. Again 
with small load impedances the effect of 
&126 can be ignored at low frequencies; 
hence only the term jwr'bCc need be retained 
in most cases. With these approximations, 

B o -

«o)/<*'o 

r'b{l/a'QUa+T) 

Fig. 2 - 2 2 The circuit represen­
tation of the short-circuit input 
impedance hub-
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the equivalent circuit may be modified to the form shown in Fig. 2-23, 
where the components juec and r'c are omitted. 

2 - 7 T H E H Y B R I D - P I H I G H - F R E Q U E N C Y E Q U I V A L E N T C I R C U I T . Although 
the equivalent circuit of Fig. 2-23 may be used for the transistor connected 
in any manner, it is frequently more convenient for the common-emitter 

E O -
•Q- -OC 

L/W«R«' 

B O -

Fig. 2-23 A simplified high-frequency equivalent circuit. The quantity A' is frequency-
dependent: A' = AOT~'WT/(L + JU/O>A). 

B O V W - O C 

E O 

B O - ^ = ^ V v V 

(a) 

+ I'' 

£ O-

(c) 
Fig. 2-24 Derivation of the hybrid-pi from the T equivalent circuit. 
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connection to have a circuit which is controlled by a base quantity rather 
than by an emitter quantity. (In Fig. 2-23, Ie is the control quantity for 
the current generator.) An equivalent circuit which has wide application 
can be easily derived from the simplified T circuit. The latter is shown in 
Fig. 2-24a, turned around for common-emitter use. The circuit in Fig. 
2-246 is identical since the same current leaves the node to the left of Cc 

and arrives at the node to the right of Cc. The two current generators 
cancel in the emitter lead so that no current is gained or lost because of 
their common connection. The combination of Ze and the current generator 
can be combined into a new impedance, 

/' = <*'H - /. = -I,{I ~ « ' ) (2-48) 
V = -IeZe (2-49) 

V Ze r'e 1 

/ ' 1 ~ « ' 1 + > / « « 1 ~ <*'0e~'uT/(l +j<»/ua) 

r' 
Z' = — — ^ (2-51) 

1 - « 6 * ~ ' 
An approximate form may be obtained by expanding the exponential in a 
series and taking only the first two terms. (This assumes that OJT < 1 at 
the highest frequency of interest.) 

r'e 
Z' = (2-52) 

1 - a'0 + jw(l/wa + a&T) 

1 — A'0 + JW/WT 

where 
1 + OtfcaT 

The impedance Z' given above is that of the parallel combination of a re­
sistor r'J(L — OQ) and a capacitor L/UTK- The current generator at the 
output of Fig. 2-246 may also be simplified, 

_ a / 7 / q v e - ^ L + j U / a a 

a'I, = — _ = - V —— ; (2-54 
£ e 1 + joj/ua re 

re 

(2-55) 

The quantity — A'0T 3aT/r'e has a magnitude which is independent of fre­
quency and a phase shift which increases linearly with frequency, i.e., a 
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pure time delay. For many purposes the time delay is not particularly 
important, and the current generator may be approximated without the 
exponential function, as shown in Fig. 2-24C.1 

This circuit, known as the hybrid-pi equivalent circuit, is very useful for 
circuit work because all the elements in the circuit are reasonably constant 
with frequency up to frequencies approaching the alpha-cutoff frequency. 
If a more accurate representation is necessary at low frequencies, which is 
usually not the case in h-f amplifiers, conductances across Cc and the current 
generator may be added.2 

One important new parameter, co(, which has considerable practical 
significance, appears in Eq. (2-53) and in the capacitor of value l/utr'e in 
Fig. 2-24c. To find the physical significance of IAT, let us investigate the 
short-circuit current gain h2IE of the common-emitter transistor. Consider 
the collector short-circuited to the emitter in Fig. 2-24c; the voltage V is 
then 

YI W ( l - « o ) W d - o , ) 
1 + [ju/{l - Oo)](l/«t + r'eCc) 1 + JW/«|(1 - «o) 

The approximation assumes that Cc <3C \/utr'e, which is true for almost all 
high-frequency transistors. 

AN OINV' 

h = ~ V ' + JaCcV ~ - V (2-57) 

r'e Tt 
I2 OCQ 1 1 

- = hu = T T ~ 7 7 , — r - =
 0 0 i , • / ^2"58) 

h 1 — A 0 l + ju/(l — ao)ut 1 -{-Ju/up 
A a0 

where 0O = (2-59) 
1 — AN 

top = (1 - ao)ut (2-60) 
The short-circuit current gain is now /30 = ao/(l — ao) at low frequencies, 
as was also shown in Table 2-1, but the current gain is Po/y/2 at the 
frequency ut(l — ao). Thus the cutoff frequency cop in the common-emitter 
configuration is up = co<(l — ao) = (1 — ao ) « a / ( l ao">a.T). Note that, 
compared with the common-base connection, the current gain of the com­
mon-emitter connection is increased by 1/(1 — ao), but that the bandwidth 
is decreased by somewhat more because of the phase-shift factor e — J ' " r . 
The fact that h2\e begins to fall off at a frequency about two orders of 

1 An important type of amplifier of which this is not true is the feedback type of 
amplifier, which is not covered herein. 

2 For an interesting discussion of high-frequency equivalent circuits and many perti­
nent references, see R. L. Pritchard, Electric-network Representation of Transistors—A 
Survey, IRE Trans, on Circuit Theory, vol. CT-3, p. 5, March, 1956. 
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Fig. 2-25 Short-circuit current gain of a common-emitter transistor. 

these reasons ft is often called the gain-bandwidth product of the tran­
sistor. 

Two important points should be kept in mind in using transistor equiv­
alent circuits. Since the useful circuits are all approximations to some 
degree, it is unreasonable to expect a single circuit to be the best approxima­
tion over the full frequency range of a transistor or for all circuit applica­
tions. Also, the accuracy of the representation may vary considerably 
from one transistor to another, even of the same type. The circuit-
application aspect of the equivalent-circuit problem will be further discussed 
in the sections dealing with amplifier applications. It usually happens 
that circuits involving very wide-range equivalent circuits, e.g., a fast 
pulse amplifier, are very noncritical with regard to the accuracy of the 
transistor representation; hence the model used need be made accurate only 
at the high-frequency end of the passband. 

Another method of using these and other equivalent circuits is to use 
only the desired form of the equivalent circuit but to obtain the actual 
element values from measurements taken in the frequency band of interest. 
This method is useful with transistors which do not exactly have the 
— 6 db/octave slope of \h2u\ shown in Fig. 2-25 but which are to be used 
at frequencies above fg in, for example, a bandpass amplifier. 

magnitude less than o a is very important in high-frequency amplifier 
design, although it is possible to build amplifiers with much wider band-
widths than wp. 

Because of the importance of oit (or ft = wt/2ir) in the equivalent circuit 
of Fig. 2-24, it is useful to measure ft rather than fa and T. This has the 
additional advantage of being a considerably easier measurement. Con­
sider the typical curve of \h2ie\ shown in Fig. 2-25. At frequencies much 
above fg, \h21e\ falls off at —6 db/octave, and if a'0 = 1, then \h2ie\ = ft/f 
in this frequency range. The frequency at which |A2ie| = 1 is /(. For 
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P R O B L E M S 

2-1. A given two-port network has the following h parameters: hn = 25 ohms, hn = 
1 0 " 4 , h n = - 1 , k a = 1 0 - 6 mho. What are the values of the z and y parameters for 
the network? 

2-2. Assume that a two-port network characterized by the h parameters is to operate 
from a source BE and load Rl- (Assume that the parameters are real.) 

a. Derive an equation for the insertion power gain. 
b. Derive an equation for the available power gain. 
2-3a. Show that the impedance looking into the input of a two-port network termi­

nated in a load impedance Zl is 
htihnZL 

Z\n = 7»u — 1 + W i 

b. Derive a similar expression for the admittance looking into the output terminals 
when the source impedance is Zg. 

2-4. Show that gmrp = 

2-5. Consider an "iterative" amplifier chain of many identical stages (theoretically 
an infinite number). A practical question is: Without using interstage transformers, 
which connection of the transistor (CE, CC, or CB) will give the greatest insertion power 
gain per stage? 

Note first that the effective load Zl for each stage is equal to the Z i n of the succeeding 
stage and that the generator Zg is equal to the output l/Fout of the preceding stage 
(cf. Prob. 2-3). Show that the effective load for each stage in the chain is 

_ (A" - 1) ± V(A" - l ) 2 - ihnh12 

l L = 
2h22 

where Aft = fen/122 — ^12^21 

Using the fe-parameter values in Table 2-1 for a typical transistor, determine the inser­
tion power gain for each connection (CE, CB, CC). Which gives the maximum? 

Fig. P2-6 

2-6. Show that any two-port network expressible in the z parameters may be repre­
sented by three impedances and one generator, as shown in Fig. P2-6. Find the values 
of Zi, . . ., Z\ in terms of the z parameters. 

2-7. Assume a triode amplifier as shown in Fig. P2-7. (Assume that Cvk is part of Zl) 
a. Find the expression for the input admittance. 
b. If Zl is purely inductive, what is the conductance component of input admittance? 

What does this tell you about the stability of a triode amplifier at high frequencies? 
(Note that the inductance could be provided by the plate lead inductance.) 
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c. If Zj, is purely resistive, show that the total effective input capacity is approxi­
mately 

C i n Cgk + Cep(l + A) 

where A is the voltage gain of the stage and Cgp(l 4- A) is often known as the "Miller 
capacitance." 

Fig. P2-7 

2-8. Using the simplified equivalent circuit of Fig. 2-23, calculate an approximate set 
of high-frequency h parameters for the common-collector connection of the transistor. 

2-9. Derive the value of the current generator and its shunting resistor shown in 
Fig. 2-12o from the circuit of Fig. 2-9a. 



3 
The Steady-state Characteristics 
of a Lowpass (Video) Amplifier 

An elementary but complete amplifier stage is shown in Fig. 3-1 for a 
pentode stage. All the elements with the exception of the load resistance 
RL are "parasitic." That is, they are necessary to set d-c levels, but they 

Fig. 3-1 A complete pentode amplifier stage. 

impair rather than aid in the production of constant gain or voltage 
amplification as a function of frequency. The elements CCC and RG are 
added to remove the relatively high plate voltage from the grid which is at 
d-c ground potential. Also, d-c potential changes due to supply variations 
and tube aging are not amplified along with the signal.1 The elements RK 

1 The problem of d-c amplification, which is important in itself, will not be taken up 
herein, since it is separate and distinct from the problem of obtaining wideband amplifi­
cation. 

38 
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(b) 
Fig. 3-2 A complete typical transistor stage. Bias is supplied by two d-c supplies in 
(a) and a single supply in (b). 

which include the tube output and input capacitances, respectively, added 
to the wiring capacitance, reduce the gain of the stage at high frequencies. 

In the case of a transistor stage as shown in Fig. 3-2 many of the same 
elements are present. The stability of the d-c operating point is controlled by 
the bias resistors RA, RB, RB, and RE. The latter is bypassed by CE, which 
usually imposes the most severe limit on the low-frequency performance of 
the amplifier. The capacitor Ccc performs the same function as in the pen­
tode stage; however, Ccc can be profitably omitted in some transistor stages 
because the collector voltage can be low so that the build-up in d-c voltage 
from stage to stage is not excessive. Separate means, such as feedback 
that is effective only at very low frequencies, may be used to reduce the 

and Ck in the cathode circuit and the elements Rs and Cs in the screen 
circuit are added to bias properly the tube and to maintain these conditions 
as the tube ages. All these components affect the amplifier low-frequency 
response and may affect the high-frequency response if there is appreciable 
inductance in series with the capacitors. The capacitances Ci and C2, 
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d-c gain and make the amplifier bias stable. Stray capacitances shown as 
Ci and C 2 are not usually as important in transistor amplifiers as in vacuum-
tube amplifiers because the limitations to high-frequency response come 
primarily from inside the transistor itself, rather than from the external 
circuit (see Sec. 2-6). 

3 -1 Low-frequency Response of Pentode Stage. Equations may 
be written which exactly describe the gain vs. frequency of the circuit in 

Fig. 3-3 Complete pentode equivalent circuit (omitting bias impedances). 

Fig. 3-1 and somewhat less exactly the gain of the circuit in Fig. 3-2; how­
ever, the complexity of the equations incorporating all the parasitic effects 
simultaneously prevents forming many useful general conclusions. In­
stead the approach of separating the high- from the low-frequency effects 
will be used, since this is an extremely accurate approximation in all 
lowpass wideband amplifiers.1 To illustrate, consider Fig. 3-3, which shows 
the equivalent circuit for a pentode circuit, for the moment omitting con-

Fig. 3-4 Simplified circuit for determining the low-frequency gain. 

sideration of the bias impedances. Experimentally it is readily observed 
that over a considerable portion of the passband of the wideband amplifier 
the gain is almost exactly constant; consequently the frequency-dependent 
reactances of C\, C%, and Ccc must have negligible effect in this midband 
region. Therefore the reactance of C\ and C% must be much larger than 
the parallel combination of rp, RL, and RE. Also, Ccc must be acting 
virtually as a short circuit between plate and grid at the signal frequency. 

1 Analyses of the rare case when this approach is invalid are given by D. C. G. Luck, 
A Simplified General Method of Resistance-Capacity Coupled Amplifier Design, Proc. 
IRE, vol. 20, p. 1401, August, 1932; and W. F. Curtis, The Limitations of Resistance-
coupled Amplification, Proc. IRE, vol. 24, p. 1230, September, 1936. 
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A(ja>) = 

where RL = 

— (jrrJi'lMg 
Ri + Rg a + l/(Ri + Rg)Cc 

TPRL 

(3-1) 

(3-2) 
rP + RL 

For the usual pentode wideband stage rp >>> RL and RG^> RL', therefore a 
good approximation to the above is 

A (jo) = —gmRL 
jo> + l/RgCc 

= —gmR. 
jooRgCc 

L -juRgCcc + 1 
(3-3) 

Notice that, if the frequency is high, the gain is constant at the value 
—gmRL', this is the midband gain for the complete amplifier, which can be 
designated A0. Notice next that when cc = l/RgCcc the real and imaginary 
terms in the denominator of Eq. (3-3) are equal; this unique frequency will 
be designated as a>i, the low-frequency cutoff due to the coupling circuit.1 

Thus in terms of the midband gain A0 and the cutoff frequency wi, Eq. 
(3-3) can be written as follows: 

AUia/ui)] i(o>A>i) 
A0 j(w/wi) + 1 

(3-3a) 

This is a general equation which describes the frequency behavior of any 
amplifier of this type. The amplitude and phase response are shown in the 
curves of Fig. 3-5. The amplitude is plotted as 20 log (A/A0), that is, the 
so-called decibel; notice that at the cutoff frequency «i the gain is down 3.0 
db from the midband value A0. Similarly the phase shift differs by 45° from 
the midband value. The curves in Fig. 3-5 may be obtained by inserting 
different values of co into Eq. (3-3a) and solving for the magnitude and 
phase of gain and /A); however, a quicker way of finding the 
approximate curve of | A | is to write the logarithm of the magnitude of 

20 log 
A 

Ao 
= 20 log 

COl 
- 2 0 log 

1 Note further that at the cutoff frequency oi\ = 1 IRgCc, 
equal to the resistance Rg. 

the reactance of Cc, 

(3-4) 

is exactly 

As the frequency is reduced from the midband value, the effect of C\ and 
C 2 becomes more negligible still but the reactance of Ccc increases until it 
no longer acts like a short circuit between plate and grid. Consequently, 
to determine the low-frequency limit of the amplifier stage in Fig. 3-3, we 
need consider only the effect of the reactance of Ccc- The equivalent 
circuit, then, for calculating the low-frequency gain is as shown in Fig. 3-4. 
The voltage gain of this circuit is 
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The first term is due to the numerator of Eq. (3-3a), and the second term 
is due to the denominator of Eq. (3-3a). These terms may now be plotted 
on semilogarithmic graph paper, as shown in Fig. 3-6. The first term is a 
straight line rising 20 db/decade (a 10 :1 change in frequency) and inter­
secting the line 0 db at co = coj. (The slope of this line is also + 6 db/oc-

u = « i L o g u / « i — * -

Fig. 3-5 Magnitude and phase of the gain of the circuit shown in Fig. 3-4. 

tave, or doubling, of frequency.) The second term is constant at low fre­
quencies, where a>ReCcc <<C 1, and decreases at a rate of — 2 0 db/decade at 
high frequencies. The actual curve for the third term is well approximated 
by using only the two asymptotes which intersect at co = coj. The maximum 
error in using the two straight lines occurs at the frequency of their inter-

(1) 2 0 log |7&>/wi| 

1 I I l 1 I 
0.0X 0.1 1 1 0 1 0 0 1 ,000 

*~ 

Fig. 3-6 Obtaining the gain characteristic of Eq. (3-3a) by asymptotic construction. 

section and is 3 db. Corrections for this will be discussed later. The 
response due to both terms is simply found by adding the curves together, 
giving the result shown in Figs. 3-6 and 3-5. Note that the approximate 
method requires only the calculation of coi = l/RgCcc if only the shape of 
the gain curve is required. — 
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The phase response may be found in a similar manner, 

I CO 

CO! 
(3-5) 

The first term is a constant +90° phase shift; the second again may be 
approximately plotted in terms of the asymptotic value at high frequencies 
( — 90°), the asymptotic value at low frequencies (0°), and a transition 

(l) /(>/<•>,) 

A/A0 0 

\ (1 + 2 ) = over-all phase response 

(2) / (w / cu , ) + l u^l/^Cc 

0.01 0.1 10 100 1,000 
1/4.8 4.8 u / " ~ * * 

Fig. 3-7 Obtaining the phase characteristic of Eq. (3-3a) by asymptotic construction. 

region about the frequency coi. The details of the latter construction are 
shown in Fig. 3-7. Again the phase due to both terms is found by adding 
the individual curves. 

Gain functions more complicated than Eq. (3-3), but of the same general 
type, can be displayed in the same way, by asymptotic approximations to 
the frequency response. The general form of Eq. (3-3) is 

J" (3-6) 
JU -+- coi 

and is a particular case of a class of gain functions expressed by 

, , . . „ 0'w + Wl)0'fc> + co 3) • • • (ju + co m ) 
A(jw) = K — 

(jco + co 2)0'co + co 4) • • • (jco + CO,,) 

The co m and co„ are real numbers and correspond to the critical (also "cutoff" 

(3-7) 
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or "corner") frequencies in the asymptotic response graph.1 As another 
example, take 

joi(jcc + COl) 
A (jo,) = KJ-^~ £ (3-8) 

(jOl + U2) 

In logarithmic form, the amplitude response in decibels becomes 

20 log | Afjw) | = 20 log K + 20 log \ju | + 20 log \ju + W l | 

- 40 log \ju + co 2| (3-8a) 

= 20(log K + log wi - 2 log co 2) + 20 log 
+ 20 log 

CO CO 
i - + 1 - 40 log 

CO! co2 

The relative gain, relative to the gain A0 at w = 0, is 
(3-8fc) 

20 log 
A 

20 log jjcoV- 20 log 
CO CO 

j - + 1 - 40 log J - + 1 
C0i co2 

(3-8c) 

(1) 20 log | ;«| 
6db/octave <2> 20 log !(,•»/«,)+ 1| 

(3) - 4 0 log J(/«/« 2 ) + ll 

Fig. 3-8 Obtaining the amplitude response of Eq. (3-8c). 

Each term can be considered separately and plotted by straight-line 
asymptotes (see Fig. 3-8). The first term gives a straight line with positive 

1 The most general form of a gain function may include terms such as (ju) 2 + 
4- fc2 which cannot be factored into the form of Eq. (3-6) with real o i m or wn. Asymptotic 
plotting of such terms can also be accomplished; see J. L. Bower and P. M. Schultheiss, 
'Introduction to the Design of Servomechanisms," chap. 3, John Wiley & Sons, Inc., 
New York, 1958. 
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slope (20 db/decade, or 6 db/octave) passing through the 0-db level at 
w = l . The second term is constant at 0 db up to the critical frequency 
oi = coi, whereupon it assumes a "unit" positive slope of 20 db/decade. 
Finally, the third term is constant at 0 db up to its critical frequency 
oi = o>2, after which it assumes a negative slope of twice the unit value, or-
4 0 db/decade, owing to its arising from a second-order factor in the de­
nominator of Eq. (3-8). Adding together the three responses gives the 
total, as shown in Fig. 3-8. 

While the straight-line approximation may suffice for many analyses, it 
is possible to refine the curves by the generalized correction factors given in 
Table 3-1. Each straight-line approximation, such as that for the second 

Table 3-1 

Gain True phase 
/ / / . (or / , / / ) * correction, f (or complement 

db of true phase) 

0.1 0.04 5.7 
0.2 0.17 11.3 
0.4 0.64 21.8 
0.6 1.34 31.0 
0.8 2.14 38.6 
1.0 3.01 45.0 

*fc is the critical frequency of the numerator or denominator term in question, 
t The correction is positive for a numerator term (zero) and negative for a denominator 

term (pole). 

term in Eq. (3-8c), is modified by the tabulated correction terms, and the 
new curves summed up. In the case of higher-order terms, such as the 
second-order third term in Eq. (3-8c), the gain correction is multiplied by 
the order of the term. 

The phase shift of the gain function can also be approximated as before, 

/A(jo>) = / j c o + 13— + 1 ~ 2 3 - + 1 (3-8d) 
/ / / " I / C02 

The result is shown in Fig. 3-9, using the same principle employed in the 
construction of Fig. 3-7. Note that numerator terms in the gain function 
[Eq. (3-8)] contribute a leading phase, while denominator terms contribute 
a phase lag. A second-order term gives twice the phase shift, as though it 
were two first-order terms. 
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A more accurate phase curve can be obtained by substituting for the 
straight-line plot of Fig. 3-9 the true phase values of Table 3-1 for each 
term in the gain function. For the second-order term the phase values are 
merely doubled. 

3-2 The Geometric Interpretation of Gain Functions. It is 
appropriate now to introduce a further generalization which will have 
great value throughout most of the later portions of the book. It consists 

first in substituting for jo> a more generalized frequency variable p, which 
also is complex but can comprise both real and imaginary components; thus 
V = a- + jw. 

It is desirable to have a good understanding of the variable p, where it 
comes from, and what it signifies.1 It can be considered, for the present, as 
originating in either of two ways: 

1. A generalization of tiut into ept, in the manner of t,alt being a useful 
generalization of the more elementary cos wt, which is a perfectly correct 
expression for sinusoidally varying currents or voltages but which is more 
cumbersome analytically than e , w ( . Note that e3at = cos ut -+- j sin cot and 
thus contains cos ut, plus additional information (j sin ut) which is not 
used directly but which is economically carried along because of the greater 
facility with which e3"1 behaves analytically. Similarly ept has great facility 

1 Further study is recommended, in treatments of network theory such as D. F. 
Tuttle, "Network Synthesis," vol. I, chap. 3, John Wiley & Sons, Inc., New York, 1958, 
or in treatments of transform analysis, e.g., M. F. Gardner and J. L. Barnes, "Transients 
in Linear Systems," John Wiley & Sons, Inc., New York, 1942. 

Fig. 3-9 Phase response given by Eq. (3-8d). 
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Pi RgC 
cc 

Still more generally, any amplifier gain function (where the amplifier uses 
linear, lumped elements) may be written in the form 

n ( p - P » ) r" + b„— +•••+! 

Equation (3-10) shows that the gain may be written in the form of a 
constant, or scale factor, K, multiplied by the quotient of two polynomials 
in p, a rational fraction. The factors of the numerator give those values of 
p—the pm which may or may not be real—for which the gain function is 
zero, and hence they are called the zeros of A (p). The factors of the denom­
inator give the values of p = pn for which the gain is infinite, and they 
are the poles of A (p); these too can be either real or complex. With gain 
on a logarithmic basis, the zeros are points of infinite loss, and the poles are 
points of infinite gain. The poles are also sometimes known as the natural 
modes. In the example of Eq. (3-7) only one term of the continued product 
in the numerator and denominator is present. The pole is located at 
p = —oil, and the zero is at p = 0. 

Thus the gain function of Eq. (3-8) can also be written in terms of p, 
giving 

, , , P(P - Pi) 

A(p)=K- (3.1O0) 
(P ~ P 2 ) 2 

An interesting and useful geometrical interpretation can be given to gain 
functions of p, such as Eq. (3-10a). Suppose that we plot in the p plane 

and, more importantly, provides some new insight into the functional 
behavior of amplifier gain functions. 

2. A function deriving from Laplace transform theory, whereby any 
time-varying current or voltage can be transformed from a time function 
(a differential equation usually) into an algebraic function of a complex 
variable p. For example, the gain function in Eq. (3-3) can be rewritten, 
by substituting p for jo>, 

A{p)=K~^— (3-9) 
P - Pi 

where K = — gmR 
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the poles and zeros of Eq. (3-10a); this is shown in Fig. 3-10. Note first 
that they lie on the negative real (<r) axis for this example, recalling that 
Eq. (3-10a) reverts to Eq. (3-8) by replacing p by jco. Note further that 
the a coordinate of the zero or pole coincides numerically with the critical 
frequencies wj and w2 of the amplitude response. Thus 

Pi = <ri +J0 = - « i + JO 

2>2 = "2 + JO = - " 2 + JO 
(3-H) 

This coincidence is restricted to the case of poles and zeros lying solely on 
the a axis. In general, poles or zeros may also exist as conjugate pairs with 

t 
(2) 

<r=p2 <r=p1 

Fig. 3-10 Pole-zero diagram for Eq. Fig. 3-11 The construction for finding 
(3-10a). /ja — pi and \ju — pi\ for one factor 

of A(ja>). 

respect to the c axis. In Sec. 8-1 the restrictions on pole-zero locations for 
physically realizable networks will be discussed. 

The geometric interpretation consists in preparing a pole-zero diagram 
such as Fig. 3-10 and from it determining A(ju) with nothing more than a 
ruler and protractor. For instance, Eq. (3-10a) shows A(p) to be simply a 
scale factor times the quotient of some vector distances on the p plane, and 
when we let p = ja, we can find the magnitude and phase angle of A fjw) as 
follows: 

\A(ju)\=K^JJl £L (3_12) 
Each of these factors may be measured with a ruler from the point cor­
responding to the frequency in question, w, to the appropriate singularity. 
Hence \jco\ is measured from the origin to co; \ju — Pi\ is measured from 
Pi to co. The resulting distances are substituted into Eq. (3-12) to find 
\A(j<»)\-

For the phase we write 

/Ajjcc) = /ju + / j cd - pi - 2/ja P2 (3-13) 
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The construction for finding the angle is shown in Fig. 3-11 for a single pole 
(or zero) singularity; the angle indicated as /jco — p\ is simply measured 
with a protractor. The geometric method is equally applicable to functions 
containing complex poles and zeros. 

3-3 High-frequency Response of Pentode Stage. With the 
methods just described for quickly determining the important steady-state 
properties of a gain function, we may now go on and briefly investigate the 
high-frequency cutoff of an audio or video amplifier. Referring again to 
Fig. 3-3, which is the complete pentode equivalent circuit omitting the 
effects of the bias impedances, we remember that in the calculation of the 
low-frequency behavior we ignored the effect of Cj and C2 because their 
shunting effect became less and less as the frequency was reduced; at the 
same time, Ccc became more and more important because its reactance is 
in series with the signal. Considering the high-frequency end of the pass-
band, however, the effect of Ccc becomes negligible because it acts more like 
the desired short circuit than at midband. The reactance of the shunting 
capacitance (Ci + C2 = C) sooner or later begins to divert some of the 
signal current gmVg to ground as the frequency is increased. Hence an 
equivalent circuit to represent the pentode amplifier at high frequencies 
can regard Ccc as a short circuit but must retain C; the resulting equivalent 
circuit is shown in Fig. 3-12a. The gain of the stage is thus 

MP) = (3-14) 
C V + L/RC K ' 

A 1 
where R = ,/^ = R l rp»RL«Rg (3-15) l / r p + 1/KL + i/Rg 

C = d + C2 

The gain function thus has a simple pole at p = —L/RC == — L/R^C, 
giving the pole-zero diagram shown in Fig. 3-126. 

The amplitude response as a function of joi can be determined from Eq. 
(3-14) by substituting p = jw, 

A f \ — ~ ® m * _ ~9MR 
' " ~C~jw + L/RC ~ jmRC + 1 ( 3 " 1 6 ) 

As in the case of the low-frequency response [Eq. (3-3)] there is a cutoff 
frequency, in this case o 2 = L/RC, and also at frequencies much below this 
there is the same limiting gain A0 = -gmR ^ —gMRL- Hence a normal­
ized version of Eq. (3-16) can be written as follows: 

A[j(«/«2)] 1 
A0 j ( co / co 2 ) + 1 
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The amplitude response can be plotted readily on a logarithmic basis by 
means of the straight-line asymptotes shown in Fig. 3-12c. At low fre­
quencies the gain is constant, and at high frequencies it falls away at 20 
db/decade. The asymptotes intersect at the cutoff frequency co 2. At this 
cutoff frequency the reactance of the shunting capacitance C is equal to the 
resistance R in parallel with it; thus the magnitude of the parallel impedance 

(a) 

Ri 1 
l/rp + l/RL + l/Rg 

(for a pentode) 

1 1 t r RC 
X 

(b) 

-20 -

-40 -

0.01 

Fig. 3-12 (a) An equivalent circuit for computing the h-f response of a pentode stage. 
(6) The pole-zero diagram for (a), (c) The resulting amplitude response. 

of the combination is 0.707i? (or — 3 db in logarithmic units), and the phase 
angle is 45°. 

Note that the gain as co becomes much less than 1/RLC (the upper band-
edge frequency) is the same as that given by Eq. (3-1) for co much greater 
than l/RGCCC (the lower band-edge frequency). Hence, if l/RLCy> 
1 /RgCcc, as is always the case in a wideband amplifier, the gain is constant 
over a large region and is given as a limiting case of either Eq. (3-1) or 
Eq. (3-14). The fact that the high-frequency solution indicates constant 
gain in the frequency region of the low-frequency cutoff (and vice versa) is 
actually the proof that the two solutions may be made separately. To find 
the over-all gain function of the stage, the two individual solutions [Eqs. 
(3-1) and (3-14)] are multiplied together. (The constant must be such as 
to give the correct midband gain.) 

A(p) = -g* l v 
C V + 1/RLC v + i/RTCA 

(3-17) 
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The pole-zero diagram and the over-all response are shown in Fig. 3-13. 
The pole far out on the a- axis is seen to be the controlling factor in the high-
frequency behavior of the amplifier, while the pole-zero combination near 
the origin determines the low-frequency behavior. Note that nothing on 
the pole-zero diagram indicates the absolute magnitude of the gain at any 
frequency but that all the information determining the shape of the gain and 
phase response is present. Also note that another way of stating the con­
dition for separation of the low- and high-frequency equivalent circuits is 
that the singularities determining the high-frequency response (the pole at 

Gain db in,f 
- 2 0 db/decade ( - 6 db/octave) 

20 db/decade (6 db/octave) 
~l/RgCcc 

Logu-
Fig. 3-13 The response of a complete pentode amplifier stage (exclusive of biasing 
impedances). 

1/RLC) must be far away (in terms of the ratio of frequencies) from the 
singularities determining the low-frequency response. 

Notice once more that poles or zeros at the origin or on the real a axis, 
as in Figs. 3-10, 3-12, and 3-13, contribute in similar fashion to the ampli­
tude response if one works with the asymptotic approximation. A pole 
provides an amplitude response which decreases at a rate of 20 db/decade 
at high frequencies; a zero provides an increase of 20 db/decade. Each of 
these high-frequency asymptotes intersects the 0-db reference at the 
appropriate "cutoff" frequency, which is equal numerically to the <r co­
ordinate of the pole or zero. The individual asymptotes add on a logarith­
mic plot to provide the over-all response of a given gain function, as in Figs. 
3-6, 3-8, 3-12, and 3-13. The phase responses add in a similar fashion, as 
in Figs. 3-7 and 3-9. 

The essence of the preceding discussion is to divide the calculation of the 
response of a lowpass amplifier into three parts, one part determining the 
low-frequency cutoff and one part the high-frequency cutoff. A third part, 
which we shall consider next, determines the gain in the region in which 
reactive effects are negligible. This is the so-called midband region. 

3-4 Midband Properties of the Common Amplifier Configura­
tions. Since a vacuum tube or transistor is usually considered to have 
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three useful terminals (control grid, cathode, and plate, or base, emitter, 
and collector), three configurations are possible with one terminal grounded. 
Taking the vacuum tube first, these are shown in Fig. 3 -14 together with 
their equivalent circuits. (The tube may be considered to be either a 
triode or a pentode with suitable values of rp and ju.) The important 
properties of these circuits, which are tabulated in Table 3-2 and should be 
well known, are the voltage gain, the output impedance (the impedance 
looking into the terminals to which RL is connected), and the input imped­
ance. The equivalent circuits shown omit all reactive elements; hence the 
values in Table 3-2 are valid only at midband. Several useful points should 
be noted in this table. The grounded-plate stage gives a voltage gain of 
less than 1 but a power gain greater than 1. The voltage gain of both the 

(c) 
Fig. 3-14 The three basic vacuum-tube amplifier configurations, (a) Grounded 
cathode, (b) Grounded plate (cathode follower), (c) Grounded grid. 



SEC. 4] COMMON AMPLIFIER CONFIGURATIONS 53 

Table 3-2 * 

GROUNDED CATHODE GROUNDED GRID GROUNDED PLATE 

A Vt ILRL gmRL « B I A Vt 
?P + Rh 1 + B Z / R P 

~ gmRL (Rh « rp) 

R„ + K I U + + R P 

B I N 00 r p + RL 

M + L 

S J - ( B I « R , ) 

Rout Tp (J. + 1 ) B , + Tp RP 
f + 1 

^ > > 1 } 

TRANSDUCER 
GAIN (POWER) 

4 / A S I B , 4RL/R, 4V?RLR. TRANSDUCER 
GAIN (POWER) ( R , + RL)* 

« 4gm"RLR, (RL « R„) 

- [1 + (R„ + RLVHR.]* J 

_ 4BL/B . _ „ 

= (1 + ! / * • « . ) » 

{(p. + \)RL + rp]' 

= 1 + « N B I 

* SEE F I G . 3-14. 

grounded-grid and grounded-cathode stages is the same, but because of the 
relatively low input impedance of the former, the grounded-grid stage gives 
less power gain. Finally, if a low output impedance is desired, the grounded-
plate stage (cathode follower) is best and the grounded-grid stage is worst. 
Note also the approximate formulas and the limits on their validity. The 
formulas requiring RL <£rp are almost always accurate in practice when 
the tube is a pentode. 

The equivalent-circuit representation for the transistor is somewhat more 
difficult than for the vacuum tube, and so the various quantities of interest 
will be developed here in an approximate manner. The exact equations 
may be developed by a straightforward loop or nodal analysis, but the 
resulting equations are frequently so cumbersome as to be useless in in­
creasing one's understanding of the fundamentals of transistor amplifier 
operation. However, use of the approximate relations can be had only if 
one thoroughly understands the approximations which have been made. 

Consider first the common-base equivalent circuit shown in Fig. 3-15. 
The various known currents are drawn in the diagram, on the assumption 
that the voltage across ru is much less than that across RL. This is very 
reasonable if the stage is an amplifier stage. The equation for V~i may be 
written by inspection once the currents are known. 
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Since RL <C RC usually, the equation for R\A may be written 

VI 
Rin = — ^ R E + r h ( l «) 

RL 

TC + RL 
« (1 - a) (3-19) 

For the same conditions, the current gain is 

12 ~<XRC 

H ~ R E + R L 

S -a if RL<ARC 

The voltage gain A is 
arcRL 

[r. + r 6 ( l - A)](RE + fa) 

aKz, 
r e + r 6 ( l - a) 

if R L « r c 

(3-20) 

(3-21) 

(3-22) 

A. 

+ 
- A A / V 

( l - a ) I , + 

ALL 

• e -

l a - " ) ^ 
• A A A r -

RC+RL 

— 1 2 

' • ! , « r e 

Fig. 3-15 Approximate currents in a common-base (CB) amplifier. 

In the common-base connection the voltage gain per stage is approx­
imately a, if stages are cascaded without transformers so that RL = RIU-
Consequently common-base stages are rarely used in wideband amplifiers 
because of the difficulty of making the necessary wideband transformer. 

The power gain of the transistor itself is 

PG 
Pin \LJ 

2 RL_ 

Rin 

a RL 
(3-23) 

Again this quantity will be less than 1 if RL = Rm-
A similar analysis may be made for the common-emitter circuit with the 

aid of Fig. 3-16. In this figure I\ is assumed; the other currents are found 
by simply applying Kirchhoff's law to each node in turn and assuming that 
the voltage across re is much less than that across RL (which is always true 
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_V\ r, reRL0 
R I N ~ 7 1 - r * + l - a rc(l-a)+RL 

i{RL«rc(l-a) (3-24) 

rb + 

;/s/i 
I -

PG fh\2 RL^ 

\lj RIN 

rb + re/(l - a) 

(3-25) 

(3-26) 

(3-27) 

Fig. 3-16 Approximate currents in a common-emitter (CE) amplifier. 

Since Rin is usually much less than rc(l — a), the above approximations 
are fulfilled in a cascade of common-emitter stages, except possibly for the 
last stage, where RL may be fairly large. Such a cascade is shown in Fig. 
3-17, where any resistors associated with the collector or base are assumed 
large compared with Rin. The power gain of the circuit in Fig. 3-17 is 

PG 
2 RL_ = 012022032RL 

RIN RIN 
(3-28) 

< < + \ 

.1 
Fig. 3-17 Elementary amplifier made up of common-emitter amplifiers. 

if the stage amplifies). From the known currents the following equations 
may be written by inspection: 
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'ill* a V 0 - « ; 

Fig. 3-18 Equivalent circuit for a common-collector (CC) stage. 

The equivalent circuit for a common-collector stage including RL may be 
drawn as shown in Fig. 3-18. The input resistance of the stage is 

= ~ = (rbh + V„) (3-29) 
lb l b 

y . . Ji- J : < ' + (3 .30, 

1 - a rc(l - a) + re + RL 

1 r e ( l - «)(r. + RL) 

Rm = rb + 1 - a r c ( l - a) + re + RL 

rc(re + RL) 
+ rb (3-31) 

rc(l - a) + RL 

If r c ( l — a) 3> RL, as is frequently the case, then 

re + RL RL 
Bin ^ + n ^ RL » re (3-32) 

1 — a 1 — a 

Hence, the input impedance may be made quite large. The voltage gain is 

A^Yl = V a - ^ ~ ~ (3-33) 
Vi re + RL VI 

^.j^-Rrr RL 1 U rc(l - a) »RL (3-34) 
1 — a j^r-Rrr re + RL 

l - a 

This is actually the maximum possible gain for the combination since in 
practice some of the collector current will flow into the collector load 
resistances and the biasing resistances. However, the preceding equation 
gives the order of magnitude of the over-all gain and is therefore quite use­
ful. The common-emitter amplifier is probably the configuration most 
often used since it gives a large gain without the use of transformers. 
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1 - A ^ good for any RL (3-37) 
RL 

1 H 
NRL 

rb(l - a) +re-\ 

- W V 

C 
- o -

• A / W 

>c(l-") 
+ t 
I 

Fig. 3-19 A common-collector stage driven from source impedance of RG. 

The maximum value of voltage gain obtained with infinite RL, is thus 
A = rc/(rb + rc), which for a typical transistor is about 0.999+. The 
power gain is 

PG 
V2

2/RL RL 

Vx2/Rh 

1 

1 - a 

[(1 - a)rb + re + RL](1 ~ *) 

if r c ( l - a) » RL » re 

(3-38) 

(3-39) 

Another quantity of interest is the impedance seen by the load when the 
common-collector stage is driven by a given source impedance, as in Fig. 
3-19. 

If we ignore r c ( l — a) because it is usually large compared with Rg + rb, 
we get 

Va = -Ib(Rg + rb) (3-40) 

- H 

1 - < 
(3-41) 

RL 
A ^ (3-35) 

(1 - a)rb + re + RL 

^ 1 if r 6 (l -a)+re « R L « r e ( l - a) (3-36) 

In some applications the precise difference between the true voltage gain 
A and unity is of importance (as, for example, in the case of some active 
filters). A quite exact expression for this case is 
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h 
re^-Ib{Re + rb) - (3-42) 

1 - a 1 - a 

out = 
V2 = -h(Rg + n) - rjb/(l - a) 

h ~ -h/(l ~ a) 
^ (Rs + rb)(l -a)+r. 

Rg 

J 
for Rg iS> rb (3-43) 

The common-collector stage has the properties of an impedance trans­
former; i.e., the input impedance is roughly (3RL, and the output impedance 
is roughly Rg/fi. However, this is accomplished with a voltage gain of 
almost unity and a considerable power gain. Thus, the circuit operates 
like a cathode follower but has a gain A nearer unity. For this reason 
the common collector is often called an emitter follower. Similarly, the 
circuit is useful for coupling a high-impedance source to a lower-impedance 
load. It may also be noted that the common-emitter and common-cathode 
stages are somewhat analogous, as are the common-base and common-grid 
stages. 

3-5 D - C BIAS CONSIDERATIONS. Proper d-c biasing of tubes and 
transistors is important because the bias determines the operating point of 
the active device. A good bias circuit is one which maintains the proper 
operating point during the life of the device and when the device is replaced. 
From the standpoint of amplifier theory, biasing is important because the 
bias circuit almost inevitably introduces parasitic elements which affect the 
signal response of the amplifier. 

cc 
(a) 

Fig. 3-20 Vacuum-tube cathode bias circuit. 
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Pentode Amplifier. To take first the simpler case of the vacuum tube, a 
basic and almost universally used biasing scheme is shown in Fig. 3-20a. 
The voltage Vcc may be of either polarity or zero; Rk is the cathode bias 
resistor. A somewhat simplified equivalent circuit is shown in Fig. 3-20&, 
where the pentode is represented by two current generators: the gmVg 

generator is the ordinary small-signal current generator, and the generator 
I0 is an additional current generator such that the d-c plate current Ib 

= QmYg + (These quantities may be found from the static plate 
curves of a tube, gm = AIb/AVg, taken near the operating point Ib and 
Vg. From the calculated value of gm and the known values of Vg and Ib, 
I0 may be calculated with the preceding equation.) For this discussion rv 

is considered to have negligible effect. The circuit is solved for Ib, the d-c 
plate current, resulting in 

h = gmVcc + IQ Vcc/Rk + Io/OmRk 

l + gmRk l + l/gmRk 

(3-44) 

The plate current can be made most stable by making gmRk large so that 
Ib ~ Vcc/Rk. This usually necessitates making Vcc a few volts positive so 
that the desired Ib is obtained. The resulting plate current is very stable 
with respect to changes in both I0 and gm, making this method of operation 
desirable with high-performance pentodes, where both these quantities are 
likely to be highly variable. In the simplest and usual case, Vcc = 0, and 
a moderate degree of bias stability is obtained because both I0 and gm tend 
to change together. If Rk = 0 and Vcc < 0, so-called "fixed bias" results 
and the plate current is extremely dependent upon both gm and I0 since 
both tend to change 7& in the same direction. Consequently this method 
of operation should not be used where much reliability or stability is 
required. 

Because adequate bypassing of Rk down to very low frequencies is some­
times very difficult, the feedback biasing 
circuit of Fig. 3-21 is a practical alterna­
tive if both positive and negative supplies 
are available. In practice, the current 
through the Ri branch is much smaller 
than the current through RL, and Vg is 
only a very few volts; hence the approx­
imate plate current and voltage are 

— (3-45) Vb^-
Rz 

vbb - vb 

RL, 

VCC (must be negative) 

(3-46) Fig. 3-21 Feedback biasing circuit. 
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The capacitor C is added to make the feedback inoperative at signal fre­
quencies in the passband of the amplifier. Omitting C reduces the input 
impedance of the stage. This particular circuit is exactly the same in 
operation as the transistor circuit shown in Fig. 3-26. 

Transistor Amplifier. In the practical realization of a transistor am­
plifier with proper d-c biasing the amplifier may be expected to operate 
satisfactorily over a wide range of temperatures, and a number of different 
transistors may be used interchangeably. On the other hand, improper 
biasing may cause the amplifier to become inoperative at elevated tem­
peratures or in some cases may even destroy the transistor. 

Three factors cause difficulty in transistor biasing: variation of pDc 
(ratio of d-c collector current to d-c base current) from unit to unit and 
with temperature, variations in the temperature-sensitive current Ico (Ico is 
the collector current with open emitter, J# = 0), and changes in VBE due 
to temperature. These factors all cause changes in the base current Is for 
a given collector current. Since a resistance is usually necessary in the 
base circuit, variation of base current leads to a change in base voltage, 
thereby changing the operating point of the transistor. Consequently a 
circuit is desired which produces little change in operating point (7c and 
VCB) with changes in base current. A change in VBE has relatively little 
effect on the bias circuits, because VBE is small compared with the voltage 
drop in the resistor which determines the emitter current. 

In the following discussion only changes induced by Ico will be discussed 
since these are most important in germanium transistors. In silicon tran­
sistors Ico is not important in most circuits until temperatures of 100°C or 
higher are reached, but changes in fine are important. However, a circuit 
which has low sensitivity to Ico is also insensitive to changes in fee, owing 
either to temperature or to replacing transistors. 

The current Ico is a result of the thermal generation of minority carriers 
in the collector and base regions. These minority carriers are drawn across 

the reverse-biased collector junction 
because the junction field is in the 
direction to attract them across the 
junction. The current Ico is thus a 
d-c component which flows from 
collector to base, as in Fig. 3-22. 
The current gain ape is the current 
transfer ratio (sometimes called hpB 
or ctfB) involving the total emitter 
and collector currents. If we neglect 
the collector resistance, which is usu­
ally quite high in a junction tran­
sistor, we may write the following 

>0 for NPN 

< 0 for PNP 

Fig. 3-22 Simple model for Ico calcula­
tions. 
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Ic = Ico — <*DC!E (3-47) 

This assumes that anc is constant over 
the operating range and that Ic is in­
dependent of Vc- Fig. 3-23 A general transistor bias-

Let us now investigate the "d-c" char- ing circuit, 
acteristics of a basic biasing circuit, as 
in Fig. 3-23. This circuit is sufficiently general to enable us to analyze 
the common biasing schemes. Let us also assume that the emitter-to-
base voltage is zero; then we can write 

Vi = RJE ~ R%IB 

V2 = - Vc + R2h - RLIC 

Ic — —IB — IE 

Ic = Ico — CDCIE 

Expressing IE and IB in terms of Ic, ICQ, and a, we get 

Ico ~ Ic 
IE = 

IB = 

OtDC 

IE = 7c(l — O D C ) — Ico OCDC 

Substitute these values in Eq. (3-48), and solve for Ic-

Ico(Ri + R2) OLDCVI 
Ic = 

Ri + R2(l - <*DC) Ri + Ra(l - aDC) 

(3-48) 

(3-49) 

(3-50) 

(3-51) 

(3-52) 

(3-53) 

(3-54) 

By differentiating Ic with respect to Ico we get a measure of the sen­
sitivity of Ic to changes in ICQ-

DIE Ri + R2 (3-55) 
dlco Ri + -ff2(l — °<DC) 

Equation (3-55) tells us the magnification of changes in ICQ which appear 
1 The following is adapted from chap. 3 of R. F. Shea (ed.), "Transistor Circuit Engi­

neering," John Wiley & Sons, Inc., New York, 1957. 

equation for Ic (this equation may also 
be used as the defining equation for 
CLDC) : 1 
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Fig. 3-24 An amplifier with 
"fixed-base bias." 

Let us assume — 160 /ua. 
25 °C). 

From Eq. (3-53) IB at 25°C is 

Icil — aoc) — Ico 

in Ic. The best condition is to make R2 = 0; 
then S = 1. This is obvious, since then Ico 
cannot change IE', hence the component 
Ic = —<XDCIE is a constant. The worst situ­
ation is to make Ri = 0. Such an amplifier 
is shown in Fig. 3-24. In such an amplifier 
IB is constant as Ico changes, but Ic changes 
by Ico/0- — aDc)- In a typical transistor 
Ico at 25°C might be —10 /m. Since Ico 
doubles, approximately, for each 10°C tem­
perature rise, at 65°C Ico = — (2 4) X 10 = 
that aDc = 0.98 and Ic = — 1 ma (at 

<*DC 

= -0.0102 ma 

(1)(0.02) + 0.01 
0.98 

(3-56) 

The collector current at T = 65 °C may be found by using the above 
value of IB, and Ico as found previously. 

Ic = 
OCDCIB + Ico (0.98) (-0.0102) + (-0.160) 

1 — <*DC 0.02 

= —8.5 ma (3-57) 

This amount of collector current could very easily cause the transistor to 
saturate (V~CE = 0) and make the amplifier completely inoperative. 

A defect of the basic circuit in Fig. 3-23 is that two batteries are required. 
A simple transformation (Fig. 3-25) will take us to a more usual circuit. 
For this circuit S is obtained by substituting R2 = RaRb/(Ra + Rb) into 
Eq. (3-55). 

S = ^ + R l , R b + 1 (3-58) 
RJRa + RJRh + (1 - aDC) 

Note that for small S the resistance Ra \\ Rb should be small. The circuit 
in Fig. 3-25 is useful in the design of an amplifier if the desired operating 
point and S are known. 

Other schemes for stable biasing may be developed. The one shown in 
Fig. 3-26 is a feedback method of decreasing the effect of Ico- The details 
are given in the reference below and in Prob. 3-7.1 

1 A. W. Lo et al., "Transistor Electronics," pp. 134ff., Prentice-Hall, Inc., Englewood 
Cliffs, N.J., 1955. 
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If Ic tends to increase, the action of this circuit is to decrease the base 
current, thus tending to hold Ic constant. The circuit is useful where a 
moderate degree of stabilization is required and where a minimum number 

(c) 
Fig. 3-25 Development of single-battery biasing from Fig. 3-23. 

of components must be used. Note that the circuit works only when 
Ico < Ic{l - aDC) [see Eq. (3-53)]. 

Biasing circuits which have small S also tend to reduce changes in Ic 

due to substituting transistors with different fioc- This is quite important 

Fig. 3-26 A method of feedback biasing (cf. Fig. 3-21). 

since different transistors of the same type may easily have values of foe 
differing by two or three times. 

3-6 Determination of the Low-frequency Response Due to Bias 
Impedances. Considering the complete pentode amplifier stage, shown 
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in Fig. 3-27 without the components affecting only the high-frequency 
response, the reactance of capacitors Ccc, Cs, and Ck will decrease the low-
frequency gain and introduce phase shift. The effect of Ccc has already 
been investigated in Sec. 3-1. Here we shall ascertain the effect of the bias 

Fig. 3-27 A complete pentode stage for low-frequency analysis. 

impedances separately and then combine the effects to find the response 
due to all three. 

Cathode Impedance. Considering first the cathode bias impedance alone, 
the equivalent circuit shown in Fig. 3-28 may be drawn. A simple and 
useful way to investigate this circuit is to determine the y parameters for 

Fig. 3-28 Equivalent circuit for determining the effect of ZK. 

the tube and Zk. Both yn and yx2 are zero, since 7i = 0 at low frequencies. 
The transfer admittance y2i is found by determining the short-circuit cur­
rent I}, — I2, 

Vg = Vi - Vk = Vi - I2Zk (3-60) 
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Therefore 

h = 
n(Vi - hZk) 

h 1 
= 1/21 = = 

Vi rp U + l)Zk 1 + gmZk 

(3-61) 

if ix + 1 = n (3-62) 

- + • 

The approximate equation is excellent for pentodes since n is then very-
large. The impedance looking into the output terminals may be found by 

Fig. 3-29 Equivalent circuit for pentode or triode with nonzero cathode bias impedance. 

dividing the open-circuit output voltage by the short-circuit current, 

V2oc = -iiVi (3-63) 

1 -V20C 

2/22 I2 
rp + OI + 1)Z (3-64) 

The new equivalent circuit thus becomes that shown in Fig. 3-29. In the 
pentode, rp is usually so large that it is ignored in comparison with the load 
resistor, and so the equivalent circuit is effectively just a modified current 
generator gm/{l + gmZk)- Note that, if Zk is negligible, the equivalent 
circuit becomes the usual one for the tube alone. By substituting the value 
of Zk = Rk/(X + pRkCk) into Eq. (3-62) a modified value of gm is found, 

2/21 = ffm 
pRkCk + 1 

= gm 

1 + gmRk p[RkCk/(l + gmRk)] + 1 

V + 1/RkCk 

v + [(1 + gmRk)/RkCk] 

(3-65) 

(3-65a) 

At high frequencies g'm —> gm, but for very low frequencies the effective 
transconductance is reduced to g'm —> gm/{\ + gmRk)- The pole-zero dia-
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gram for Eq. (3-65a) is shown in Fig. 3-30a. The effect of the pole and 
zero is to cause the gain to decrease for co < (1 + gmRk)/RkCk, as is shown 
in Fig. 3-30b. Two important points may be gained from Fig. 3-306; the 
first is that the gain begins to fall at a frequency considerably higher than 
the natural frequency of the cathode circuit, l/RkCk. The second is that, 
since the frequency (1 + gmRk)/RkCk is strongly dependent upon gm if the 

20log( l+gR K ) 

-A 1 

t 
1 fl/A 

« A 

(a) 

Fig. 3-30 Gain of a stage with cathode bias (no effects due to screen or coupling circuit), 
(a) Pole-zero diagram. (6) Gain magnitude, (c) Phase of output relative to the input. 

stage is stably biased, the point at which the gain begins to decrease is not 
a particularly constant one because of the variability of gm; hence there is 
little point in making elaborate calculations to find the exact low-frequency 
cutoff. 

The phase shift caused by the cathode impedance is also of importance, 
and the contribution to the total phase due to each term in Eq. (3-65a) is 

/A(ju) = Mn= / jco + \/RkCk - / jco + ( 1 4 - gmRk)/RkCk (3-66) 

The resulting phase response is shown in Fig. 3-30c. 
One final point remains to be clarified. In the preceding it has been 

assumed either that the screen is operated from a zero-impedance supply or 
that it has been bypassed by an infinitely large capacitor. In either case 
the effect of the cathode circuit is dependent upon the return path for the 
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screen current. As shown in Fig. 3-31, the screen supply (or bypass capac­
itor) may be returned either to the cathode or to ground. In the former 
case (Fig. 3-3 la) only the plate current flows through Zk, and the normal 
pentode gm is the correct transconductance to use in calculating the pole 
position. In the latter case (Fig. 3-316), both the screen and plate cur­
rent flow through Zk, and the correct transconductance to use is the gm of 
the tube connected as a triode (gwr), which is approximately equal to 

I b + I c 2 10 
gmr = — - g m (3-67) 

h 
where /& and IC2 are the d-c plate and screen currents, respectively. In 

(a) (6) 

Fig. 3-31 Two methods of screen connection in pentode amplifiers. 

either case, the effective gm should reduce to the pentode gm at high fre­
quencies. 

Emitter Bias Impedance. For the moment we shall digress from com­
puting the effect of impedance in the screen of a pentode and find instead 
the effect of impedances in series with the emitter of a common-emitter 
transistor amplifier. We shall find that the effect is very similar to the 
cathode bias impedance so that we may draw upon the preceding discus­
sion. 

The transistor case is complicated by the fact that changes in the col­
lector impedance have some small effect on the input to the transistor. 
These effects are usually of little consequence at low frequencies if the 
collector is loaded by at least the base circuit of a following transistor, as 
is the case in a chain of common-emitter stages. Consequently, in most 
cases the resistor r c ( l — a) may be omitted and the equivalent circuit for 
the bias problem drawn as shown in Fig. 3-32.1 All the impedances to the 

1 The resulting equivalent circuit for the transistor is the same as that using the 
h parameters and neglecting ha and hu. If necessary the effect of 7*22 may be approx­
imated by adding a resistor of IA22 in shunt with the output current generator. The 
effect of hi2 is usually quite small. 
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left of the base (including Ra and Rb in Fig. 3-25) are lumped into one 
TheVenin equivalent Re. It is desirable to split the equivalent circuit into 
two separate loops, as shown in Fig. 3-32b. That the two circuits are 
identical may be shown by writing the equation for the input loop in both 
cases, 

re7i ZeIi 
7i = hRg + hrb + - + (3-68) 

1 — a 1 — a 

This equation is the same for both figures. By substituting Ze we get 

Re/(l - «) 
Fx = h Rs + rb + - + 

1 - a 1 + vReCj 
(3-69) 

R. 
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Fig. 3-33 Circuit for calculating the low-frequency cutoff due to the coupling circuit. 

a frequency considerably higher than co = l/ReCe, the natural frequency 
of the bias circuit itself. In the case of the transistor bias circuit, the source 
impedance driving the stage in question has an important effect on the 
frequency of the pole—the higher the source impedance, the lower the 
frequency at which the gain begins to fall. Notice that the source imped­
ance usually cannot be increased without limit because of the necessity of 
having resistance from the base to ground to give bias stability, as shown in 
the preceding section. 

Because the source impedance does affect the low-frequency cutoff, the 
effects of the coupling capacitor (C c c in Fig. 3-2) and the bias impedance 
Ze interact to some extent. Consequently the exact low-frequency cutoff 
cannot be found by considering the two circuits separately, as may be done 
in the case of the pentode. However, if the cutoff frequencies of the coupling 
and bias circuit are quite different, the approximate low-frequency cutoff 
may be found by taking the higher of the two frequencies. That is, the 
cutoff frequency of the bias circuit is found by considering Ccc to be infinite; 
then the coupling-circuit frequency is found by regarding Ce as infinite. 
The circuit for computing the latter frequency is shown in Fig. 3-33, where 
the transistor is represented as in Fig. 3-326 with Ze = 0. The cutoff 
frequency for the coupling circuit is that for which the reactance of Ccc 

equals the generator resistance plus the parallel combination of Ri and the 

Since the voltage gain of the amplifier is directly proportional to I\, the 
above expression is directly proportional to the gain of the amplifier. Thus 
the presence of Ze causes the gain of the stage to have a zero at p = — l/ReCe 

and a pole at p = — [Rs + RJ(l ~ a)]/RsReCe. This is the frequency at 
which the reactance of the effective emitter bypass capacitance C e(l — a) 
is equal to the parallel combination of Rs and Re/(1 — a). Equation (3-70) 
has exactly the same pole-zero configuration as the equation describing the 
response due to a cathode bias impedance [Eq. (3-65)]; consequently the 
shape of the response is the same as shown in Fig. 3-30 with the new pole 
and zero frequencies inserted. Again note that the gain begins to drop at 
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input resistance of the transistor. The transfer admittance may be written 

Kp 
as 

h 
= Y, = 

P + l/T 

[rb + re/(l - a)]R! 

K -

n + R./(L - a) + Rt 

Ri 

(3-71) 

(3-72) 

(3-73) 
Rg[Ri + rb + R,/(L - « ) ] + [rb + R./(L - a)]#i 

If the cutoff frequency CO = 1/7 7 is considerably different from that com­
puted for the bias circuit (say at least four times), then the cutoff frequency 
of the entire stage may be taken as the higher of the two cutoff frequencies. 
If the two cutoff frequencies nearly coincide, curves of the response due to 
the coupling and bypass circuits considered separately may be sketched and 
added together (on the assumption that the ordinates are in decibels) to 
find the approximate cutoff frequency for both circuits taken together. The 
cutoff frequency found in this manner in a typical case is about 20 per cent 
lower than the actual cutoff frequency. 

3-7 CALCULATION OF LOW-FREQUENCY CUTOFF DUE TO THE SCREEN-GRID 
CIRCUIT. The calculation of the effect of impedance in the screen circuit 
requires knowledge of how changes in the screen voltage affect the plate 
current. Several methods may be used to calculate the effect of the screen, 
but a most straightforward method, which also brings out quantities which 
are usually neglected, is to write a set of three simultaneous equations 
which relate to Fig. 3-34. 

h = yn Vi + 2/i 2F 2 + y13V3 (3-74) 
12 = 2/21 Vi + 2/22^2 + 2/23 F 3 (3-75) 

13 = 2/31 Vi + y32V2 + 2/33^3 (3-76) 

Zs = R,/(l+pRsCs) 
Fig. 3-34 Reference voltages and currents for pentode operation with ungrounded 
screen. 
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Measured Calculated 

9m 5,050 /jmhos 
RP 1.41 megohms 
RPT 6.41 kilohms 

(EB = 125 volts) 
2/21 2,030 Mmhos 1,992 Mmhos 
2/22 1/23,300 mho 1/22,700 mho 
2/23 0.68 jumho 0 
2/32 107 ̂ mhos 112 yumhos 

Each of the y's can be defined by measuring an appropriate current with 
all but one V equal to zero; for example, 2/33 = I3/V3 with Vi and V2 equal 
to zero. Hence 2/33 = l/rp, the normal plate resistance. For the negative-
grid pentode at low frequencies Ix = 0; hence yu = y12 = y13 = 0. The 
normal pentode transconductance is 2/31 = gm; y2i is the transconductance 
from the control grid to the screen grid and is given by the relation y2i 
= gmIc2/Ib, where Ic2 and Ib are the screen and plate d-c currents, respec­
tively. The dynamic resistance of the screen grid with all other electrodes 
grounded is l/j/22 = rp2- An approximate value for rp2 may be obtained if 
the plate resistance of the tube connected as a triode (screen and sup­
pressor connected to the plate) is known: rp2 = rptIbt/Ic2, where rpt is the 
triode plate resistance, Ibt is the d-c current to the triode plate, and Ic2 is 
the d-c current to the screen. The calculation of these approximate quan­
tities is based upon the fact that the ratio of plate to screen current is a 
fixed quantity dependent upon the geometry of the tube and relatively 
independent of the plate and screen voltages as long as the tube is operated 
above the knee of the pentode plate characteristics.1 Because of this y23 is 
approximately zero and can usually be neglected. The remaining admit­
tance 2/32 represents the change in plate current caused by a change in 
screen voltage and is y32 ~ (l/rP2)Ib/Ic2- If necessary, all these quantities 
can be measured with an ordinary vacuum-tube bridge. 

1 An example of the calculation of these y's is 

12 H 12 12 _ Ic2 2/21 = — = — — = GM — S GM -F 

As an example of the quantities involved, the data below refer to a 6AU6 operated at 
EB = 250 volts, EC2 = 125 volts, H = 7.6 ma, 7 c 2 = 3.0 ma. The measured quantities 
are obtained with a tube bridge; the calculated quantities are determined as described 
in the text. Note the good agreement. 
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To solve for the effects of ZS) we write 

h = 2/21 Vi - V22hZs since V2 = -I2ZS and y2S ^ 0 (3-77) 

= J * ^ - (3-78) 
1 + y22Z, 

h = ysiVi - Vz2hZ, + 2/33F3 ( 3"79) 

2/322/21^1^ , 

= 2/31 - — — + ^gFg (3-80) 

1 + 2/22̂ s 
The first two terms in the last equation give the effect of control-grid 
voltage Vi on the plate current; hence we may obtain a modified trans-
conductance which takes into account the effect of Zs, 

h 2/322/2A 
= 2/3i - — (3-81) 

Vi 1 + y22Zs 

If the values previously found for the y's are substituted into the above 
equation, the similarity to a modified gm is easier to see, 

Is gmZs/rp2 V~r9m~ 1 + Zs/rp2 V rp2 + Z8 \ rv2 + ZJ 
(3-82) 

Note that, if Zs = 0, the result is the normal transconductance found with 
V2 equal to zero. Substituting the value of Zs for the screen circuit param-

Fig. 3-35 Response due to the screen circuit alone. 
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eters given in Fig. 3-27 gives 

Z S = — (3-83) 
1 + pRsCs 

h 
R./(l + pRsCs) 

rp2 + R./(X + PRsCs) 

gm{p + 1/fl.C.) 

V + [(r, 2 + Rs)/rp2Rs](l/Cs) 

(3-84) 

(3-85) 

The pole in Eq. (3-85) corresponds to the frequency at which the reactance 
of the bypass capacitor Cs equals the parallel combination of the dynamic 
screen resistance and the screen dropping resistor Rs. The resulting pole-
zero diagram and frequency response shown in Fig. 3-35 are very similar to 
those for the cathode circuit shown in Fig. 3-30. 

3-8 L o w - f r e q u e n c y R e s p o n s e o f C a s c a d e d S t a g e s . In the preced­
ing discussion each of the low-frequency cutoffs was discussed separately. 
To combine the effects due to coupling, cathode, and screen circuits or the 
effect due to several stages, one must know how the functions describing 
the effects combine. As an example, consider a pentode stage with a 
coupling circuit and a cathode bias circuit. In this case the over-all equiv­
alent circuit using the equivalent for the tube and ZK as shown in Fig. 3-29 
is that shown in Fig. 3-36. In almost all cases the parallel combination of 
Ri, and the branch containing rp is essentially equal to RL- Therefore, the 
equation for voltage gain, referring to Eq. (3-65) for the coupling circuit, is 
the product of the functions describing the cathode circuit and the coupling 
circuit, 

qm RLRZ V 
A(p) = y~ — - (3-86) 

1 + gMZK RL + Rg V + 1/(RL + RS)CCC 

'•• gmRh P + l/RkCk 

V 
l + gmRk v + l/RgCc 

RkCk 

RL « Rt (3-87) 

Because the over-all response is the product of the individual responses, 
the over-all pole-zero diagram is merely the superposition of those describ­
ing the behavior of the cathode and coupling circuits individually, and the 
amplitude (on a logarithmic scale) and phase responses can be added 
together to give the correct over-all response, as shown in Fig. 3-36. Note 
that the necessary requirement for the responses to be multiplied in this 
case was the neglect of a reverse coupling, i.e., output to input; in this case 
the neglected element was rp, which is indeed a good approximation for a 
pentode, but less so in the case of a triode because rv may not be much greater 
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than RL. A situation similar to the triode case arises when both cathode 
and screen effects in a pentode must be included: the screen acts much like 
the plate of a triode as far as the cathode is concerned. Hence the effects of 
the cathode and screen circuit do not exactly add; since, however, an exact 
solution of the low-frequency cutoff is not usually desired, the approximate 
solution obtained by ignoring interaction is frequently employed. A similar 

(a) 

Due to 
the cathode 

circuit 

Due to 
the coupling 

circuit 

(b) 

Gain, I 
db 1 

Due to CK and RK 

Due to C M and RS 

Over-all response 

Log w • 

(c) 
Fig. 3-36 Low-frequency characteristics of a vacuum-tube stage including the effects 
due to the coupling and cathode biasing circuits, (a) Equivalent circuit, (b) Pole-zero 
diagram, (c) Response. 

effect exists in a cascade of transistor common-emitter stages because the 
transistor is not quite a unilateral device even at low frequencies; hence the 
effects of successive stages cannot exactly be added, but for most practical 
purposes addition suffices. One can thus conclude that the responses of the 
individual stages of a cascade of grounded-cathode stages may be exactly 
added. If other types of stages are employed, some care should be used in 
combining the responses. 

3-9 DETERMINATION OF THE AMPLIFIER HIGH-FREQUENCY RESPONSE. 
The determination of the high-frequency cutoff of a pentode stage 1 is much 
easier than the determination of the low-frequency cutoff because the only 

1 The triode is little used in wideband amplifiers because of the excessive shunting 
capacitance. For example, see Prob. 2-7. 
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A{p) 

where 

C p + 1/RC 

C = d + C2 

(3-88) 

1 _ 1 
R rv 

1 1 

RL Rg 

1 
R~L 

for rp » RL « Rs 

The bandwidth of the stage is B = l/2irRC, and the midband gain of the 
stage A = —gmR. The product of gain and bandwidth is 

Gain X bandwidth = GB = 9m 
2^C 

(3-89) 

and is independent of either the gain or the bandwidth. Thus one can 
attain more gain at the expense of bandwidth, or vice versa. Note that the 
capacitance C will be largely the input and output capacitances of the tube 
plus the additional stray wiring capacitance. Hence the gain-bandwidth 
product is largely dependent upon the tube, since the wiring capacity is 
usually kept to a minimum. More will be said concerning this when we try 
to improve the gain-bandwidth product (or, as we shall see, improve the 
gain/rise-time quotient). 

Let us for the moment leave the problem of improvement to the next 
chapter and find the analogous h-f behavior for a transistor amplifier. Here 
the situation is more complicated because of the more complex equivalent 
circuit for the device. Let us first examine the case of a common-base stage 

(a) i i 

h nb^Ze+r'b(l- a'); h12b=jur'bCc 

(b) Fig. 3-37 Common-base amplifier stage, (a) Actual circuit, (ft) Equivalent circuit 
using high-frequency h parameters. 

significant elements are the shunt resistances and capacitances in the inter­
stage, as shown in Fig. 3-12. The transfer function for high frequencies 
written in terms of the variable p was given in Eq. (3-14) and is repeated 
here for convenience, 
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driven from a resistive source Rg and coupled to a load RL, as shown in 
Fig. 3-37. Such a situation might arise in the last stage of an amplifier 
which must drive a rather large resistive load over a relatively large band­
width. Since simplifications to the equivalent circuit for the transistor were 
given in terms of the h parameters in Sec. 2-6, the simplest course at this 
time is to use the /Vparameter representation as shown in Fig. 3-37b. The 
approximate values of the h's are repeated in the figure. Note that the out­
put is effectively shunted by CC since h22 = pC c ; therefore one reason for 
the gain falling off at high frequencies is the shunting effect of the collector 
capacitance. However, even if RL were made very small to make the effect 
of Cc small, two other effects would still cause an h-f cutoff. One is caused 
by the decrease in current gain as the frequency ua is approached; the other 
is caused by the increase in input impedance Z{a with increasing frequency. 
The following should serve to bring out these three effects analytically: 

First let us calculate the bandwidth of the output circuit alone, assuming 
the input current Ix to be constant. 

-h2ihRL Iia0rpT RL V2 = -I2RL = = (3-90) 1 + h22RL 1 + p/i»a 1 + pRLCc 

The bandwidth for constant h is dependent upon both the alpha-cutoff 
frequency and the "output circuit bandwidth" \/RLCC- For our example 
we shall assume that the load is a high resistance so that c o « » \/RLGC, 
thus making the latter factor dominant. 

To find the effect of the input impedance, we may write Z\D in terms of 
the h parameters, h2ihi2ZL 

Ziu = /Hi - 1 _ _ (3-91) 1 + h22/jL 
Substituting for the h's and retaining only the first two terms of the series 
expansion for e~pT, we obtain 

1 + p(V«>a - « o D / ( l - «o) 
Zin = Ze + n(l - an) — ; 

1 + p/coa co(l - VT)pr(,RLCc 
(1 + pAo a)(l + VRLCC) 

This expression can be simplified by combining the terms and discarding 
terms in p 2 , which is a reasonable approximation for the frequency range 
which will be discussed. 

Z i n Ze + r'b(l - a0) — — (3-93) 

(1 + p/W)(l + VRLCC) 
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To simplify things further, let us first assume that the source impedance is 
large compared with the 1-f transistor input impedance, which is true if the 
input circuit is not to limit the bandwidth to a very small value; second, let 
us assume that the load impedance and collector capacitance are sufficiently 
large to limit the bandwidth. These assumptions are thus 

RG » K + r'b(l - « 0 ) (3-94) 

and RLCC » — + a0T (3-95) 

Note that Rg does not need to be very large for the inequality to hold 
because r'e + r'b(l — a 0) is typically in the range 10 to 5 0 ohms. With 
these inequalities satisfied, the approximate value of input current Ii is 

7 l Kg + Ah, Kg + mpjtfiO'c/U + PKLUC)I 

VAl + VRT.CA 
(3-96) 

Rg + (Rg + r'b)VRLCC 

The voltage gain for these conditions may also be found by using the 
previous expression [Eq. (3-90)] for V2/Ii, 

V* _ 1 + VRLCC a0RL 

VS ~ Rg + (Re + r'b)VRLCC 1 + PRLCC 

<XORL 1 

RK 1 + p(l + r'b/Rg)RLCc 

(3-97) 

From this rather drastically simplified equation we may now find the stage 
bandwidth, voltage gain, and gain-bandwidth product. 

1 
Br = — bandwidth in radians/sec (3-98) 

(1 + rb/Rg)RLCc 

ClnRL 
A = — - (3-99) 

Kg 

G B ' U K I Y ' IR^W, <3-I00) 

The largest bandwidth is obtained for a given RL, when the source resistance 
is infinite, i.e., when the stage is driven by a current source. However, the 
gain-bandwidth product is then zero; it is increased by decreasing Rg, but 
Rg cannot be decreased too much, or the preceding approximations become 
invalid. 
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This illustrative calculation for a particular type of grounded-base stage 
illustrates the typical complexity of even a simple transistor circuit and 
further shows that useful results, which may be easily interpreted, can be 
obtained by restricting the solution to a particular range of some variables. 
This technique of restricting the useful range of a solution to obtain simpler 
equations is a powerful and necessary tool on many occasions, and par­
ticularly in transistor circuits. 

(c) 1 
Ceq = T ' ( I + M I C C - R L ) 

C O f J e 

Fig. 3-38 Common-emitter amplifier stage, (a) Actual circuit. (6) High-frequency 
equivalent circuit, (c) Circuit with Cc represented by a Miller capacitance. 

A similar analysis for a common-emitter stage, as shown in Fig. 3-38, 
proceeds most easily from the hybrid-pi equivalent circuit of Fig. 2-24c, 
repeated in Fig. 3-38b. Note that stray capacitances have not been in­
cluded because their effect is usually small compared with the effects due 
to the transistor. One should not forget the presence of parasitic capaci­
tances, however, because their effect may not always be negligible, par­
ticularly with vhf transistors. 

One difficulty with the circuit of Fig. 3-38b is the capacitor Cc, which 
prevents the circuit from being unilateral; i.e., the input circuit is affected 
by changes in the output circuit. The effect of Cc may be approximated by 
noting that the current flowing in it is 

I = (V — V2)jaCc (3-101) 

If we neglect the reactance of Cc in shunt with RL, which is a reasonable 
thing to do in the usual range of values of RL used in common-emitter 
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amplifiers, then 7 2 is 
-aoV 

7 2 ^ — fa (3-102) n 

and the current through Cc is approximately 

= \ V' + —— fa j jo,Cc 7 ' |icoCc (̂ 1 + -2L-J (3-103) 

Consequently the effect of Cc is about the same as connecting a "Miller-
effect" capacitance of value C c ( l + aaRL/r'e) from 7 ' to ground and omit­
ting the capacitor Cc entirely. The resulting equivalent circuit is shown in 
Fig. 3-38c. Since usually l/wtr'e S> Cc and a 0 = 1, the value for C e q is con­
veniently approximated by 

1 C c fa 1 
C e q ^ — + — 7 - = — (1 + co Afa) (3-104) co,re re cotre 

With the aid of this simplified circuit, the gain and bandwidth are very 
easily found. The voltage gain is 

II , A ( v ) - _ ^ 1 

7 , (fa + r£)(l - «o) + rl p(fa + riJrJC, 
1 + (1 - a 0 ) ( fa + r0 + r'e 

(3-105) 
7 2 aofa 1 r'e 

— ^ : if » fa + r'b (3-106) 
7 , r'e 1+ p(Rg + r'b)Cea 1 - a 0 

The final approximate equation is usually valid in a video-type amplifier 
because fa is of necessity small. For the common-emitter amplifier the 
bandwidth 

1 r'e 

Br ^ ^ oit (3-107) (fa + rOCeq (fa + r£)(l + coAfa) ' 
is increased by decreasing the source impedance fa. The maximum obtain­
able bandwidth, which is obtained by using a voltage source (fa = 0), is 
1 /r'bCeci. From this it is seen that a transistor suitable for wide bandwidths 
has a high co(, a low collector capacitance Cc, and low base resistance r'b. 

The bandwidth with very large fa may be obtained from Eq. (3-105) 
by finding the limit of Br as fa approaches infinity. 

1 — «o 

lim Br = co* « « - » 1 + C O , f aC c 
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This limiting bandwidth (if RL is small) is the so-called beta-cutoff fre­
quency, op = (1 — a0)coj, diminished by the effect of CC. This bandwidth 
is approximately that of a resistance-coupled stage, designed to give high 
gain as in an audio amplifier. 

Since a single stage rarely produces enough gain, the multistage situation 
depicted in Fig. 3-39a is of particular interest. Because the output circuit 

L ri 
- O - A / W 

Fig. 3-39 Cascaded common-emitter stages, (a) Actual circuit, (b) Simplified equiv­
alent circuit of an "interior" stage. 

of the transistor circuit appears essentially like a current generator, an 
interior stage has a generator impedance oi RL and a load impedance of RL 
also. (Note that, in calculating the gain and bandwidth of T 2 , the stage is 
opened at 2-2'. The bandwidth reduction due to the input capacity of T 3 

is taken into account in computing the bandwidth of the third stage with 
RL regarded as its source impedance.) The bandwidth and gain-bandwidth 
product [both on the assumption that r'J(1 — a0) ^> RG -j- r'b] are 

r'e 
B^ut - (3-108) 

(RL + ri)(l + ^,RLCC) 

OIHRL 
GB a* U t (3-109) 

(RL + RI)(L + ^RLCC) 

This time, the gain-bandwidth product is a function of the load resistance 
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R L ^ ^ J — (3-HO) 
' oitLc 

The resulting maximum GB is 

011 
(1 + V c o ^ C c ) 2 

One way of designing a stage is to give RL its optimum value first and 
then adjust the d-c emitter current for the desired gain and bandwidth 
(A = a0RL/r'e and r'e = kT/qls)- This method of optimization is not 
applicable over a very wide range and with many transistors is only of aca­
demic interest because oit often depends quite strongly on IE, particularly in 
drift transistors. Consequently one does better by choosing IE to maximize 

01t. 
For estimation purposes the inequality 

GB = o> t (3-112) 
tells us that a rough estimate for the gain of a stage is obtained by dividing 

- oit by the desired bandwidth. 
It is interesting to compare the three amplifier examples discussed in this 

section. In the vacuum-tube amplifier the high-frequency limit is imposed 
by the tube and stray circuit capacitances. Both sources of capacitance 
are of the same order of magnitude. The gain of a stage is inversely 
proportional to the bandwidth. In the common-emitter transistor stage 
the high-frequency limit arises because of the effects of r'b, oit, and Cc; stray 
capacitance has relatively small effect (on the assumption of normal wiring). 
The gain of a stage is not exactly inversely proportional to the bandwidth. 
In both types of amplifiers the bandwidth is increased by decreasing the 
load and source resistance; in the common-base stage, on the other hand, 
we found that the bandwidth increases with increasing source resistance 
and decreasing load resistance. Numerous other important examples could 
be worked out for the high-frequency response; however, we shall stop at 
this point in the discussion of steady-state response and go on to the discus­
sion of amplifiers with transient signals, since it is this type of signal that 
the majority of wideband amplifiers must handle. 

RL and can in fact be maximized by the proper choice oi RL- The value of 
RL which maximizes GB is 
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PROBLEMS 

3-1. Write the equations for V^/Vi for the circuits shown in Fig. P3-1, and sketch 
straight-line approximations of the amplitude and phase response (V2/V1 versus fre­
quency, etc.). Give the values of the corner frequencies in terms of the appropriate R's 
and C's. 

+ 
O A A A - 1 ( H 

+ 

(c) 

Assume C 1 » C 2 

(a) (b) 

Plot for: C1 = 0,CZR0 
C 2 =0, C1T0 

Fig. P3-1 

3-2. Find the y parameters in terms of rp and n for a grounded-grid triode stage. 
Discuss the conditions under which such a stage might be useful. 

Fig. P3-3 

3-3. A circuit commonly used as a phase inverter, especially in d-c amplifiers, is the 
so-called paraphase inverter shown in Fig. P3-3, where the tubes may be either triodes 
or pentodes. 

a. For two triodes derive an expression giving the voltage gain from the input grid to 
each plate. 

b. Derive an expression similar to that of (a), but using the pentode equivalent circuit 
neglecting rv. Under what conditions might this equivalent circuit be valid for triodes 
as well? 

c. For the following circuit values and the 12AX7 triode characteristics determine the 
value of R2 so that the gain to the two plates is identical. Ri = 68 kilohms, R3 = 220 
kilohms, y. — 100, rp — 60 kilohms. 
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3-4o. Find the exact value of transducer gain for the amplifier in Fig. P3-4a. Assume 
that RE = 15 ohms, r& = 250 ohms, RC = 2 megohms, and A = 0.98. 

OMITTED 

(a) (6) 
Fig. P3-4 

6. Find an approximate value for the transducer gain by replacing the T equivalent 
with the simpler circuit of Fig. P3-46, which omits RC. Compare the two values of gain 
you obtain, and comment on the circuit conditions which are necessary for approximate 
equivalence between the two values of gain. 

3-5. Find the value of CCc and CE to give a low-frequency cutoff of 100 cps due to each 
individual capacitor in the transistor amplifier of Fig. P3-5 (i.e., make both cutoff fre­
quencies coincide). Use the data of Table 2-1. 

- 2 0 V„ = +15v 

Fig. P3-5 Fig. P3-6 

3-6. The single-stage transistor amplifier shown in Fig. P3-6 is to have a voltage gain 
V 2 / V 1 of 50 and a stability factor of 5. The known circuit values are given in the 
diagram. The transistor is to operate with IE = —0.5 ma and VCE — + 5 volts. 
(Assume that VBE = 0.) At this operating point the transistor parameters are HUE = 
5,000 ohms; H\ie = 2.5 X 10~ 3 ; = 100; fee = 50 ^mhos; ICo = 2 N&. 

A. Give the values for RL, RA, RB, and RE. (There is a unique value for each element.) 
b. How low can the low-frequency cutoff be made by increasing C c c? 
3-7. Show that the feedback biasing circuit shown in Fig. 3-26 is actually the same 

as the single-battery biasing circuit shown in Fig. 3-25 by redrawing the circuit. (Some 
of the resistors in the latter circuit will be missing, of course.) Then by substituting the 
appropriate resistors into Eq. (3-58) show that the sensitivity factor is 

„ _ RL + RI 
RL 4- R/(L — ADC) 

3-8. The amplifier in Fig. P3-8 is composed of a common-emitter stage driving a 
common-collector stage. Such an amplifier combination might be used to drive a low-
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impedance load. The transistor parameters are rc = 1 megohm, a = 0.98, r« = 6 
ohms, and n = 500 ohms. (In all calculations it is important to disregard elements 
which have little or no effect.) 

a. Calculate the mid-frequency voltage gain VL/VS. 
b. Calculate the transducer power gain. 
c. Approximately what are the d-c operating potentials at each element of both 

transistors? 
d. Approximately what is the maximum rms voltage without peak clipping which the 

amplifier will deliver? 
e. Calculate the maximum transducer power gain possible with any source and load 

impedances. What are the source and load impedances which give this maximum gain? 

Fig. P3-8 

3-9. A pentode stage using the 6AU6 (use the measured characteristics given in 
Sec. 3-7) is to have a low-frequency cutoff of 20 cps and a high-frequency cutoff of at 
least 2 Mc. Design the stage so that all the low-frequency cutoffs occur at the same 
frequency. Find all the missing values in the circuit of Fig. P3-9. What is the maximum 
gain that may be obtained? 

+ 250v 

Ci is the total capacitance at the plate. 

Fig. P3-9 

3-10. The amplifier shown in Fig. P3-10 is a common-collector stage driving a com­
mon-emitter stage. The purpose of the common-collector stage is to provide a relatively 
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high input impedance compared with the 1-kilohm source. The two transistors are 
identical and have the following low-frequency parameters: re — 15 ohms; rb = 500 
ohms; a / ( l — a) = 50; rc = 1 megohm. The high-frequency parameters are r'e = 25 
ohms; r» = 100 ohms;/* = 20 Mc; Cc = 10 pf. Use any reasonable approximations for 
computing the following: 

a. Find the mid-frequency voltage gain, that is, V2/V1. 
b. Find the value of the capacitors C\ and C2 to give a lower cutoff frequency of 20 

cps. Make C\ = (1 — a)Ci so that the capacitors have equal effect. 
c. Find the input and output resistance of the amplifier in the mid-frequency range. 

- 1 5 v 

Fig. P3-10 

d. As a start on computing the high-frequency cutoff of the amplifier find the Thevenin 
equivalent circuit of the first stage (viewed into the emitter and ground terminals). 
Pick a suitable equivalent circuit with an eye to simple analysis. Neglect the effect of 
Cc, which is usually a reasonable approximation, and assume that a can be adequately 
represented by 

«o 
a — ;—-— 

1 +JU/01 
e. What would the high-frequency cutoff of Ti be if it were feeding a 100-ohm load? 

(The capacitance l/uar'e may be neglected here.) 

3-11. An unbypassed cathode resistance is often 
used to decrease the distortion introduced by a stage. 
Compute the output resistance of such a stage as 
shown in Fig. P3-11, and compare it with the output 
resistance of the Btage with the cathode bypassed. 

Fig.P3-11 

3-12. It was shown in Sec. 3-9 that the high-frequency cutoff of a pentode amplifier 
stage is an £ 1/RC, where R and C are as defined in the section. For n stages in cascade 
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call the high-frequency cutoff w„. Show that 

^ = V 2 1 ' " - 1 
coi 

0.833 
n ^ 2 \/n 

Is this expression also good for cascaded resistance-coupled common-emitter stages? 
Why? 

3-13. Show that the reciprocal of the expression derived in Prob. 3-12 gives the rela­
tion between the low-frequency cutoff of one stage and n identical stages, assuming that 
the cutoffs are due only to the coupling circuits. 



4 
Step Response of Lowpass (Video) 

Amplifiers: Speed of Rise 

Most lowpass amplifiers are required to handle transient signals rather 
than steady-state sine-wave signals. Hence what one would really like to 
know is the behavior of the amplifier with an input similar to that which the 
amplifier must actually amplify. Test data obtained with actual signals 
may be difficult to interpret or to generalize from, although this method of 
testing is used with video television amplifiers. Here the test signal might 
be obtained from a special test pattern, passed through the amplifier, and 
displayed on a picture tube. More usually, however, the transient test 
signal is a step voltage or low-frequency square wave. Such a signal would 
occur in a television system at an abrupt transition from white to black. 
Since the use of an amplifier is most often to amplify a transient signal, it is 
logical to design the amplifier on the basis of its transient response rather 
than its steady-state response. Consequently, we shall consider improve­
ments on the high-frequency response obtained in the analysis of the last 
chapter on the basis of the transient behavior, rather than merely trying 
to extend the bandwidth. In some ways the transient behavior is more 
difficult to deal with, and in very complicated cases we may have to fall 
back upon steady-state analysis; therefore an additional point of interest 
is the relationship of the transient response to the steady-state response. 

4 -1 Pentode Stage—Choice of Tube. Let us begin the transient 
study with the simplest case: the pentode stage shown in Fig. 3-1 with the 
equivalent circuit shown in Fig. 3-12a. The response of this stage to a unit 
step voltage input [u(t)] may be found by assuming Vi(p) = £[vi(t)] 
= £[u(t)] = 1/p; then the output voltage of one stage is [see Eq. (3-88)] 

87 
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V2(p) = Vl(p)A(p) « ~~ * _ (4-1) 
pC p + 

» a ( 0 = -QnJtO- ~ e-tlRC) (4-2) 
The 10 to 90 per cent rise time TR and ultimate (same as mid-frequency) 
gain A are 

TB = 2.2RC - ' V \ (4-3) 

M l = flf»B (4-4) 

If one sets out to design the resistance-coupled amplifier stage to give 
both high gain and a small rise time, one is confronted with a contradiction. 
From Eqs. (4-3) and (4-4) it is seen that for a given tube, i.e., a given gm 

and C, one can increase RL to raise the gain but in doing so one lengthens 
the rise time. This proportionality of gain and rise time can be expressed 
as a quotient whose magnitude is independent of R and depends primarily 
upon the tube, 

Gain A gm 

= — = — (4-4a) 
Rise time TR 2.20 

The capacitance C includes both input and output capacitances of the 
tube (on the assumption that both tubes associated with the interstage net­
work are of the same type), together with the stray wiring capacitance. 
The latter can usually be made small compared with the tube capacitance, 
and in any case it is apparent that, if two tubes have equal gm but different 
C, the one with the smaller C will be better. In Table 4-1 are listed the 
transconductances gm, the total capacitance C (which includes 4 pf for stray 

Table 4-1 * 

Tube Ci, pf Co, pf C, pf gm, Mmhos 
Gain/rise time, 

psec 

6AK5 4.0 2.8 10.8 5,000 210 
6AG5 6.5 1.8 12.3 5,000 185 
6AH6 10.0 2.0 16.0 9,000 256 
6AU6 5.5 5.0 14.5 5,200 163 
6EW6 9.9 2.5 16.4 14,500 402 
5847 7.1 2.9 14.0 12,500 405 
6688 7.5 (±0.9) 3.0 (±0.5) 14.5 16,500 (±2,300) 517 

* All capacitances measured with tube cold (cf. Table 10-7). 
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Fig. 4-1 Comparison of tube types for gain/rise time. No allowance has been made 
for wiring capacitance; so any point should be moved vertically by the proper amount. 
Note that points for low-C tubes move farther vertically for a given added wiring capaci­
tance. Graphical presentation suggested by a similar plot from J. R. Whyte, Electronics, 
April, 1952. 

Although Eq. (4-4a) and Table 4-1 are derived from the properties of the 
elementary resistance-coupled amplifier stage, it will turn out that with 
more complicated networks the same figure of merit for the tube will apply. 
Better circuits will give more gain for the same rise time, but gm/2.2C is 
still a common multiplier for all. 

4-2 Pentode Stage—Choice of Circuit. It might well be expected 
that by going to a more sophisticated circuit than the elementary resistance-

1 For actual computation, the values of capacitance used should be those with the 
tube operating normally, i.e., the "hot" capacitance. For comparison of measured 
values of hot and cold capacitance, see Table 10-7. 

wiring capacitance), and the A/TR quotient, which becomes a sort of 
"figure of merit" for the tube in a resistance-coupled amplifier circuit. A 
graphical tabulation of many tubes is shown in Fig. 4-1.1 
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coupled interstage network one could achieve better performance in terms 
of more gain for a given rise time, i.e., a higher gain/rise-time quotient. 
The gm/C ratio of the tube is a universal factor that appears in the gain/rise-
time quotient for all the circuits; so one should eliminate this as a factor in 
comparing alternative circuits to be used with the same tube. Since the 
resistance-coupled circuit is the simplest, we can use it as a reference and 
divide the gain/rise-time quotient for any other circuit by gm/2.2C. This 
will then give a relative speed, or figure of merit, for the circuit.1 There are 
several basic network structures which can be used; the more complicated 
ones give greater speed, but the designer must decide where to draw the 
line, for beyond some point the added complexity does not give enough 
improvement to justify the added difficulty of design and adjustment (par­
ticularly in a manufacturing or field servicing situation, where unskilled 
workers are involved). 

4 -3 Shunt-peaked Circuit. The first step in circuit refinement 
beyond the elementary resistance-coupled circuit leads one to the so-called 
shunt-peaked circuit,2 shown in Fig. 4-2a. This circuit provides a substan­
tial increase in speed relative to the resistance-coupled circuit, and with 
little increase in complexity. It is probably the most widely used of the 
circuits discussed here. 

It is necessary to specify a parameter that defines the value of L relative 
to RL and C. Notice that L is a variable to be adjusted after RL has been 
chosen to provide the desired gain, since the final value of gain for the 
circuit is gmRL as before and C is fixed by the tube. Let this factor be 
called m, after Valley and Wallman,3 defined by the relationship 

A L 

&L 1/ 

1 A more complicated figure of merit which employs a factor for the overshoot intro­
duced by many circuits is given by R. C. Palmer and L. Mautner, A New Figure of 
Merit for the Transient Response of Video Amplifiers, Proc. IRE, vol. 37, pp. 1073-
1077, September, 1949. To use this figure, it is necessary to know the acceptable limit 
of overshoot for the service intended, e.g., perhaps 2 per cent for television, as suggested 
by these writers. 

2 The name is derived from steady-state considerations, where the parallel resonance 
of L and C tends to produce a peak in the curve of amplification vs. frequency. By way 
of contrast, the sm'es-peaking circuit, which enjoyed popularity for a time, employs an 
inductance in series with the coupling capacitor CC. 

3 G. E. Valley, Jr., and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, M.I.T. 
Radiation Laboratory Series), p. 73, McGraw-Hill Book Company, Inc., New York, 
1948. Other writers use the same or similar factors; F. E. Terman, "Electronic and 
Radio Engineering," 4th ed., pp. 292-296, McGraw-Hill Book Company, Inc., New 
York, 1955, calls the factor Q2, since m is the Q of the circuit at the frequency / 2 , where 
Xc = RL- Also m = Qo2, where Qo is the circuit Q at the resonant frequency 
h = 1/2WLC. 
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As the factor m is increased from zero (corresponding to the simple resist­
ance-coupled case) to a value of 0.6 by increasing L for a given combination 
of RL and C, the step-response curves that result are as shown in Fig. 4-26. 
It can be seen that as m is increased the rise time decreases, with overshoot 
appearing for values of m greater than 0.25. A physical interpretation of 
the effect of adding the inductance is that, in order to charge the capacitor 
C as rapidly as possible, the maximum current should flow from the gen-

u t/RLC 

(6) 
Fig. 4-2 A shunt-peaked stage, (a) Circuit. (6) Step response. 

erator into C. Without L the initial current does flow entirely in C, but as 
the voltage builds up, more of the generator current is bypassed into the 
resistor RL- Adding L slows up the increasing current in the RL branch. 
Eventually, with L made larger, the current build-up in RL is slowed so 
much that the capacitor voltage overshoots its final value. (Note that if L 
were infinite the RL branch would be an open circuit and the capacitor 
voltage could increase indefinitely at a rate I/C = gmVgl/C.) 

The figure of merit n of the shunt-peaked circuit, i.e., its speed (10 to 90 
per cent rise) relative to the resistance-coupled circuit, increases with m, as 
illustrated in Fig. 4-3. Also shown is the curve of overshoot, which is zero 
up to m = 0.25 and then increases with m. 

From Fig. 4-3 it can be seen that the most beneficial range of m is from 
0 to 0.25, where the relative speed -q increases from 1.0 to 1.4 without any 
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overshoot appearing. Beyond an m of 0.25 the overshoot commences, with 
both T; and the overshoot increasing, but the latter more rapidly.1 The way 
in which values of m greater than 0.25 come to produce overshoot can be 
illustrated with the aid of plots of the poles and zeros of the transfer 

n 

0 0.1 0.2 0.3 0.4 0.5 0.6 
m~L/RL

2C 

Fig. 4-3 Characteristics of a shunt-peaked stage. 

function (gain) of p, as in Fig. 4-4; this function is 

-gm p + R/L 
Hv) C p2 + p(R/L) + 1/LC 

V ~ Po 
C (p ~ Pi)(p - P2) 

(4-6a) 

(4-66) 

A study of a table of Laplace transforms, or indeed a more thorough 
analysis,2 will show that, when system or transfer functions of the kinds in 
(o), (b), or (c) of Fig. 4-4 are driven by a step function Vi/p, the time re­
sponses contain only damped exponentials which combine to give a mono-
tonic rise to the final value. On the other hand, when the system function 
contains conjugate pairs of complex poles (off the negative real axis), sine 
and cosine terms can appear in the solution, giving rise to the oscillatory 
overshoot. 

1 Discussions based upon steady-state analysis sometimes mention a value of m = 
0.414 as "critical peaking," or "critical compensation." It turns out that this value of 
m is the crossover point between a frequency-response curve that falls off uniformly at 
the high-frequency end—as does the resistance-coupled case—and one that has a peak 
or hump. But from the standpoint of the transient response to a step, this value of m 
has no particular significance (Fig. 4-2t>). 

2 J. H. Mulligan, Jr., Effect of Pole and Zero Locations on Transient Response, Proc. 
IRE, vol. 37, pp. 516-529, May, 1949. 
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(a) (6) (c) (d) Fig. 4-4 Pole-zero diagrams for shunt^peaked stages with different damping (m). 

4 - 4 Improved Shunt-peaked Circuits. Properly proportioning the 
capacitance shown as Ca in Figs. 4-5 and 4-6 can provide improved per­
formance compared with the simple shunt-peaked circuit. Two parameters 
describe the relations of the elements in Figs. 4-5 and 4-6. One is m 

Overshoot, % M 5 1 

0 0.422 0.125 1.58 
0.3 0.593 0.225 1.84 
1.0 0.661 0.280 1.89 
3.0 0.765 0.380 1.97 

Fig. 4-5 An improved two-terminal network. 

= L/R2C; the second is d — Ca/C. By analytically studying the step 
response of the network for different values of 8 and m, optimum values for 
these parameters may be found for a desired value of overshoot. This is a 
numerical process requiring a great deal of calculation. Values obtained in 

Overshoot, F M S 1 

~ 1 0.35 0.22 1.77 

Fig. 4-6 Doba linear-phase network. 

this way by F. A. Muller are tabulated in Fig. 4-5.1 A similar network 
shown in Fig. 4-6 with a value of m = 0.35 and 5 = 0.22 gives a network 
credited to S. Doba of the Bell Telephone Laboratories. This latter net-

1 F . A. Muller, High-frequency Compensation of RC Amplifiers, Proc. IRE, vol. 42, 
no. 8, pp. 1271-1276, August, 1954. 
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work is known as a linear-phase network because of the linear relation 
between steady-state phase and frequency. The network gives n = 1.77 
(i.e., the rise time is 2.2flC/1.77) and an overshoot of about 1 per cent. 

4-5 OTHER TWO-TERMINAL NETWORKS. Further complexity of struc­
ture can be added to the two-terminal form of network by considering the 
reactance X in Fig. 4-7 to be an arbitrarily extensive arrangement of L and 

FIG. 4-7 Generalized two-terminal net- FIG. 4-8 The arrangement of L and C for 
work. X in Fig. 4-7 as investigated by Elmore. 

C, as in Fig. 4-8. This situation has been explored by Elmore,1 with results 
as follows: (1) the improvement in speed of rise, as each new element (L or C) 
is added, diminishes rapidly after the first one or two; (2) an ultimate 
improvement factor of 2.12 for an infinite number of elements is indicated 
by the analysis, though not proved conclusively. 

4-6 FOUR-TERMINAL NETWORKS. A whole family of four-terminal 
networks can be devised which give substantial improvement over the two-

0 •CX~CJ2 

L^Q.2RL
2C2\ : C„ = 0.22C, 

= T = C , 

FIG. 4-9 Four-terminal "linear-phase" network for Ci = C2/2. 

terminal variety. Added complexity results, however, and the response of 
the networks to a step is sensitive to the ratio of Ci/CV 

Two typical examples are illustrated in Figs. 4-9 and 4-10. The former 
is called the "four-terminal linear-phase network" and provides a relative 

1 W . C. Elmore, The Transient Response of Damped Linear Networks with Particular 
Regard to Wideband Amplifiers, J. Appl. Phys., vol. 19, pp. 55-63, January, 1948. 
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speed of 2.48 over the resistance-coupled counterpart. A 1:2 ratio of Ci: C2 

is assumed in the design. 
The circuit of Fig. 4-10 is commonly called the "series-shunt-peaked 

network." It assumes a 1:1 capacitance ratio but is less sensitive to devia­
tion from this value than the network of Fig. 4-9. 

Fig. 4-10 Four-terminal network for C\ = C 2. 

In Fig. 4-lla is a third circuit, this one for a 1:1 ratio of capacitance. 
Failure to realize this ratio results in response waveforms as shown in Fig. 
4-116. 

A network which is faster and more complicated than the preceding 
because of the utilization of mutual inductance is shown in Fig. 4-12. This 

(a) 

0.550;: 

-AA/V— 
3 . 7 5 ^ 

L 2 = 1.15.R i
2C1 

LX = 0 . 2 ^ ^ 

. C 2 = Cj 

1.2 

1.0 

0.8 

vg2(t) 0.6 

0.4 

0.2 

0 

(6) 

^ 1 ^ 3 

V > ^ 3 

7 J Ay A / 
A/ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

t/lRiC. + C,)}-^, 

Fig. 4-11 Four-terminal network designed for Ci = C 2. (a) Circuit. (6) Step response 
for (1) C 2 = Ci, (2) C 2 = Ci/2, (3) C 2 = 2Ci. 
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network has been investigated by F. A. Muller for a range of capacitance 
values. A part of his data are reproduced in the table in Fig. 4-12.1 

The relative speed of the four-terminal networks is substantially greater 
than that of the two-terminal forms. The circuit of Fig. 4-9 provides 
rj = 2.48, while the circuits of Figs. 4-10 and 4-11 give values of 2.06 and 2.1, 
respectively. The circuit of Fig. 4-12 is the fastest of all, but it may not be 
easy to realize physically because of the large values of coupling coefficient 
k required. 

q±C2/(Pi+C2) 
b^L2/RL

2(C^C2) k=L12/V Lj.L2 

Over­
shoot, % 

1 
0 6 

k 
1 

0 0.5 0.125 0.250 -0 .707 2.11 
1 0.5 0.170 0.373 -0 .314 2.76 
1 0.4 0.185 0.364 -0 .459 2.95 
1 0.3 0.203 0.386 -0 .565 3.16 
1 0.1 0.222 0.449 -0 .653 3.46 

Fig. 4-12 Muller four-terminal network. 

The maximum speed of a four-terminal network has not been conclusively 
established 2 but is probably in the neighborhood of 4. As in the case of 
two-terminal circuits, the actual networks in practical use fall short of the 
maximum but provide much improvement over the resistance-coupled 
form. More complicated structures than those shown here can be devised, 
but the added speed comes slowly with the extra elements required.3 

4-7 TRANSIENT RESPONSE OF TRANSISTOR VIDEO STAGES—THE SERIES-
PEAKED STAGE. The equivalent circuit employed for analysis of transistor 
video stages is that of Fig. 3-38c. One of the two simple interstages is the 
series-peaked circuit of Fig. 4-13. This circuit derives its name from the 
fact that the inductor is placed in series with the input of the following 

1 Muller, op. cit. 
2 Valley and Wallman, op. cit., pp. 81-82; also Ph.D. dissertation by George W. C. 

Mathers, Stanford University, 1951. 
3 A class of interstage networks based upon filter theory is presented in a classic paper 

by Harold Wheeler, Wideband Amplifiers for Television, Proc. IRE, vol. 27, p. 429, 1939. 
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stage. The second type of interstage employs an inductor in series with 
RL, that is, in shunt with the second transistor (Fig. 4 -17) . This is shunt 
peaking and analogous to the pentode case already discussed. The two 
cases will be discussed in some detail, for the useful relations are again 
approximations, and the details of the approximations must be known for 
the results to be applied properly. 

In discussing either case, the voltage gain taken as V'2/V'i will be used, 
although these two voltages are internal node voltages not actually appear­
ing in the circuit. The voltage gain between any two identical points in 
adjacent stages will be the same as V'2/V'i, however. 

I 

I 
I 

> 

I 

-J " L . 

CkCeq s ( l / U ( r ' c ) ( l + w , i J i 2 C c ) Rkr'e/(l-a0) 

Fig. 4-13 Transistor equivalent circuit and series-peaked interstage. 

The voltage gain of the series-peaking circuit will be considered first 
because the results are somewhat simpler and are also useful in designing 
an input stage where RL is then the source resistance in series with a voltage 
generator Ve. The transfer impedance Z2i of the interstage shown in Fig. 
4-13 is 

_ A V2 RLiR/(ri + RLi + R) 
Z2i — — 

h 2 LCR 
v V v 

r'b + RLi + R 

For convenience define 

L R(rj + RL1)C 

H + RLi+R r't + RL1 + Ri 
+ 1 

(4-7) 

Ri = ri + Rn + R (4-8) 

A Riri + Ru) 

n + RL\+ R 

Note that i2 e q is the resistance in parallel with C. With these substitutions 
Z2\ may be written as 

RLIR/RI 
Z21 = — (4-10) 

p2(LCR/R1) + piR^C + L/Rj) + 1 ^ J 
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2 
i = 0 f REQC 

""* ' ~ X X - t X — 

Fig. 4-14 Locus of the poles of a series-peaked stage as L is increased from zero. 

<5C ReqC. This will be shown to be usually true in a video amplifier. The 
two poles of Z2i, if L/Ri is neglected, are 

-ReqC ± V i ? e q
2 C 2 - tfjCR/Ri 

P l ' P 2 = 2 Z C 7 ^ ( 4 ' 1 3 ) 

The locus of the poles pi, p2 as L varies is shown in Fig. 4-14. The max­
imum value of L without having complex pi and p2 is that which makes 
the radical vanish. This value of L gives critical damping. Making L 
larger introduces oscillatory terms which cause overshoot in the output 
waveform. 

, , 4LCi? 
faq

2C2 = — - (4-14) 
Hi 

RxRjC RC(ri + RLi)2 

As-it = = (4-15) 
4fi 4( /? L 1 + 4 + R) 

Substituting this value of L into Eq. (4-10) gives 

For L = 0 the voltage gain is 

V% —a0Z2i —a0RLiR 1 
A = — = = (4-11) 

VI r'e RiK pReqC + 1 

The form of the step response, the constant in the numerator of Eq. (4-11) 
being disregarded, is 

v'2(t) « (1 - e - ' / B « i c ) (4-12) 

The rise time of the uncompensated stage, as for Eq. (4-2), is thus 2.2R e qC. 
If L is increased from zero, the rise time decreases without any overshoot 
appearing until a critical value of L is reached. To facilitate understanding 
the effect of changing L, write Z2\ in factored form, assuming that L/Ri 

t 
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The output voltage v'2(t) for a step input is 

v2(t) « 1 - ( l + e~2t,R°«c (4-16) 

The 10 to 90 per cent rise time TR of v'2(t) is then found by numerical 
substitution in Eq. (4-16), 

TR = 1.7 R^C (4-17) 

The inductor causes an improvement in rise time of 

A rise time of simple resistance interstage 
(4-18) 

rise time of interstage in question 

= 1-3 (4-19) 
2 .2RQQC 

1.7REAC 

The addition of enough inductance to give critical damping thus mate­
rially improves the rise time, but not quite as much as in the pentode case, 
where m = 0.25 gives n = 1.4. 

The inequality which was used to give these results may now be inves­
tigated. 

L Ren2C 

R-C>>R-r^r (4-20) 

This may be written in the form 

1<<4(1+:db) <4-21) 

The inequality is sufficiently well satisfied if the stage bandwidth is at least 
a few times the beta-cutoff frequency. Reducing RLX for shorter rise times 
makes the inequality still more valid. 

It is instructive to form the gain/rise-time quotient for a transistor stage, 
as was done for the pentode amplifier. Using Eqs. (4-11) and (4-12), we 
obtain 

CXORLIR 
(4-22) Rir'e 

A i)a0RLiR 1 
TR ~ r'e(R + RLI + ri) 2.2REQC 

(4-23) 

This may also be written in a normalized form on the assumption that the 
stage in question is one of a series of identical stages, RL1 = RL2 = RL. 
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Note that R12 enters into the determining of the value of C [see Eq. 
(3-104)]. 

A ria0 utTB 2.2(1 + r'b/RL){l + mtRLCc) 

i j a 0 

where 
2.2(1 + r'b/RL)(l + aRLM) 

a = tatCcr'b 

(4-24) 

Note that, in contrast to the pentode amplifier, the gain/rise time is not a 
constant but depends upon the ratio of load resistance RL to base resistance 
r'b and also upon a = utCcr'b, which is a constant for any given transistor. 

Decreasing the rise time of a stage by decreasing RL increases the first 
term of the denominator of Eq. (4-24) but decreases the second term. 
Hence there is an optimum RL which gives the greatest gain/rise time. 
This optimum is the same RL which gave the maximum gain-bandwidth 
product in Eq. (3-110), which is repeated here, 

RL, o p t — 
ri> 

C0(C c 

n or 
RL,' 

= V a " (4-25) 
o p t 

0.4 

3 0.3 

0.2 

0.1 

h r'bCc 

=0 

0.01S 

aolT 
i\ 1 

0.01S 

aolT 
i\ 1 
U. 1 

0.2 0.4 0.6 

n/RL 

0.8 1.0 

Fig. 4-15 Normalized gain/rise time for an iterative (BLI = RLZ) transistor stage with 
no peaking. 
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The effect of changing RL on the gain/rise time is easily seen in the graph 
of Fig. 4-15. The gain/rise time is reduced at high values of RL by the 
effect of the feedback capacitance CC and at low values of RL by the effect 
of r'b. The curves are not exactly correct for very large values of RL, how­
ever, because of the approximations in deriving the effect of the feedback 
capacitor (see Fig. 3-38c). The effect of r'b and CC is serious in a fast 
amplifier, as can be seen from the value of a = wtrBCC = 0.06 for a typical 
high-frequency transistor with ft = 100 Mc, r'b = 50 ohms, and CC = 2 pf. 
Figure 4-15 also shows the value of gain/rise time which is obtained for a 
series-peaked stage if the value of A/utTR is multiplied by 77 = 1.3. 

The calculation of the required load resistance RL for a given stage rise 
time in a chain of iterative stages involves the solution of a quadratic; 
however, a graph can be prepared which simplifies the calculation. The 
rise time for the series-peaked stage (after substituting for # e q and C) is 

2.2 R{RL + ri) 1 
- ( l + ccTRLCC) 7, R + RL + K cotK 

2.2 RL + ri W - . R ^ 

V 1 + (RL + ri)/R ^ 

1 / , R L \ — ( l + «,rJC8 —J (4-26) 

( RL + ri\ 22ri(RL \( , RL\ 
TB(l+——-)= —) (4-27) 

\ R / ncotn \n / \ n/ 
= T'B - r , = a 

In the usual case TR is approximately equal to T'R, although the former is 
always somewhat smaller. The modified rise time T'R is now only a function 
of RL/rb, which is what we seek, and of two quantities depending only upon 
the transistor characteristics: a = wtr'bCc and Ti = 2.2rb/riaitr'e. Hence we 
may plot T'R/Ti as a function of fa/rj, for some typical values of a. This 
is done in Fig. 4-16, which is useful for both the uncompensated stage and 
the series-peaked stage by taking t] to be 1.0 and 1.3, respectively. Although 
it might appear from an inspection of Fig. 4-16 that the load resistance is 
proportional to r'b for a given TR, this is not true, for the rise time is also 
normalized by r'b. Hence, although r'b is important in determining RL, a 
small error in the measurement of r'b will not lead to a proportional error 
in RL or rise time. 

To find the exact RL for a desired rise time, an iterative process must be 
used, since TR is not exactly equal to T'R. As an example, assume that the 
characteristics of a transistor are 

r'b = 50 ohms Cc = 5 pf 

r'. = 10 ohms 1 

ut = 2 X 108 radians/sec 1 ~ a o 
= 50 
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•on 

Fig. 4-16 Load resistance as a function of stage rise time (for iterative stages, that is, 
RLI = Ru). 

Figure 4-16 gives RL/r'b = 2.2 or RL = 110 ohms. The ratio T'R/TB = 1 
+ (RL + r'B)/R = 1 + (110 + 50)/500 = 1.32. Hence the actual rise 
time obtained with the 110-ohm load resistor is 0.15/1.32 = 0.114 jusec. 
To obtain a more accurate value, a modified value of T'R may be used, 
which is (0.15) (1.32) = 0.198 ^ 0.2 tisec. This value of T'R leads to RL 

= 155 ohms and to a calculated TR = 0.142 ^sec. If this value is not 
close enough to the desired TR) the process may be repeated; however, the 
approximations in the equivalent circuit make the use of extreme precision 
in these calculations of doubtful value. 

Then a = o}tr'bCc = 0.05, and Tx = 2.2rkWJ = 4.23 X 1CT6 sec (for 
v = 1.3). 

Suppose that the load resistance RL for a stage rise time of 0.15 jusec is 
to be found. For a first trial take T'R = 0.15 jusec; then T'R/Ti = 3.54. 
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4-8 T h e S h u n t - p e a k e d T r a n s i s t o r I n t e r s t a g e . The shunt-peaked 
interstage shown in Fig. 4-17 has no more elements than the previously-
described series-peaked stage but has considerably improved performance. 
The transfer impedance of the shunt-peaked stage is 

Z21 — 
[RRL1/(RLi + n + R)](pL/RL1 + 1) 

p2RLC 
+ V 

(ri, + RLi)RC 
+ 

Ru + r'b + R lRLl+r'b + R RIA + r'b + R 

(4-28) 

+ 1 

This equation has the same denominator as the equation for the series-
peaked circuit; however, there is now a zero in Z2\ at p = —Rn/L = —z0. 

A / W -
+ 

lR 

I L . 

C 4 (1 / U ( r-)(1 +atRLZCc) R 4 r,'/(l - a„) 

Fig. 4-17 A shunt-peaked transistor interstage. 

' l 

T '* 

Again the value of L may be chosen so that critical damping is obtained-
this will require the same value of L as before, 

• ^ c r i t — 

(ri + RLI?RC 

URLI +ri + R) 
(4-29) 

For this value of L the poles of Z2i are in the same position as for the 
series-peaked circuit, 

2(RL1+r'L+R) 2 
Vi=V2= = —-z (4-30) 

(RLI + n)RC REQC 

To compute the rise time for the interstage, we must also consider the 
effect of the zero in Z2i; consequently the form of gain function we must 
consider is 

K(p + z0) K'(s + z0/Pl) 
HV) = - — ; ^ = — , . ,s0 (4-31) 

(P + PiY (s + l ) 2 

where V 
s = —-

Pi 
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Hence the maximum value of z 0 /pi is 2; the minimum value that is useful 
is probably in the neighborhood of unity since RLI < rj, leads to very low 
gain. From calculations of rise time for various values of Zn/Pi the rise-
time improvement factor ij may be calculated as a function of Zn/Pi- For 
the shunt-peaked interstage, T; as a function of r'b/Rn is shown in Fig. 4-18. 

2.0 

a 1 3 

o 
-£ 1.8 
CD 
B <u 
I 1.7 
a. 
E 
'» 1.6 
E 

.£ 1.5 

1.4 

0 0.2 0.4 0.6 0.8 1.0 

Fig. 4-18 Rise-time-improvement factor for a critically damped, shunt-peaked tran­
sistor stage. 

The value rj = 1.44 for large values of RLI is somewhat better than that 
obtained for the series-peaked interstage, but in the range of T'JRLI fre­
quently encountered in a fast amplifier the value of ?j obtained for the 
shunt-peaked stage is very considerably better. The improvement ob­
tained by using shunt peaking is graphically shown in Fig. 4-19, where 
normalized gain/rise time is shown as a function of r'b/RLi for an interstage 
with no peaking, with series peaking, and with shunt peaking. These 
curves are for the iterative situation, RLI = RL2 — RL, as in a chain of 
identical stages. 

The rise time of the shunt-peaked stage is given by Eq. (4-26) with 
appropriate values of n; however, the equation must be treated differently 
to find RL for a required rise time in a chain of identical stages, because »/ is 

The rise time may be found from Eq. (4-31) by calculating the response to 
a unit step for various values of z 0 /pi . To find the range of values for the 
latter, we find 

z 0 2 
- = (4-32) 
P L 1 + rS/Bu 
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now a function of r'b/RL- Equation (4-26) may be written in the form 

RL + rt\ / RL + r'b\ 2.2r'b [1 (RL \( RL\] 

\ R / oitre lv \ n / \ n / J 
(4-33) 

= T'R — r 2 = a 

The quotient T'R/T2 is now a function of Ri,/rb and transistor parameters 

0.5 

0.1 

0.2 0.4 0.6 0.8 1.0 

Fig. 4-19 Comparison of normalized rise times for three interstage networks using a 
transistor having a — 0.05. 

since i\ = /(jRi/rJ,). A graph of RL/K as a function of T'R/TR for various 
values of a = utr'bCc is shown in Fig. 4-20. The use of Fig. 4-20 and Fig. 
4-16 is identical, but Fig. 4-20 is valid only for shunt-peaked stages, since 
the value of n is "built in" instead of appearing in Tx. 

The step responses of the three types of transistor video interstage are 
compared in Fig. 4-21. These curves may be considered to be the response 
obtained by keeping RL fixed and changing L to the proper position in the 
circuit and the proper value for each curve. Note that, although the rise 
time is reduced by series peaking, the time delay is increased. This results 
because dV/dt is zero at t = 0 + in the series-peaked stages, whereas dV/dt 
is maximum at t = 0 + for both the unpeaked and shunt-peaked stages. 
Although the series-peaked circuit is inferior to the shunt-peaked with 
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Fig. 4-20 Normalized load resistance as a function of normalized rise time for a shunt-
peaked stage (RLI = RL2)-

obtained for both cases, with the same degree of circuit complexity. The 
solution of the transistor case is more complicated, however, primarily 
because of the presence of r'b and C c. Four-terminal interstages can be 
devised for transistor use also, but they have one limitation not present 
in pentode-tube use: the higher gain is obtained by an impedance-trans­

forming action at the higher fre­
quencies; i.e., the input impedance 
of the interstage tends to become 
large at high frequencies. For 
transistor use this action tends to 
accentuate the effect of CC in the 
transistor driving the interstage: 
thus the bandwidth of the previous 
stage is reduced by more than the 
Miller-effect capacitance calculations 
of Eq. (3-104) would indicate. 
Hence the increased gain/rise-time 

Fig. 4-21 Step response of a transistor quotient obtained by the four-ter-
stage. minal interstage is somewhat offset 

1.0 

t/ Req C 

Step response of a transistor 

regard to rise time, series peaking is useful at the input of a transistor 
amplifier driven from a resistive source. 

A comparison of the results obtained by peaking circuits for both the 
vacuum tube and transistor shows that comparable values of r; may be 
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by the decrease in the bandwidth of the driving stage. The effect is, of 
course, to some degree present even in the transistor peaking circuits dis­
cussed herein. 

4 - 9 Amplifier Stages in Cascade. In general, a single stage of 
amplification is not adequate to meet the gain requirements of a system, 
and hence several stages will be connected in cascade. The question arises 

0.2 

y n 

r 
2 

fI 
\ 10 

/ 
f / \ \ 

L i \ \ 
L 0 2 4 6 8 10 12 14 16 

t=t/RC 

Fig. 4-22 Step response of an w-stage RC amplifier. 

as to the over-all response of the system when the responses of the individual 
stages are known. Of course, the entire system could be analyzed as a 
formal circuit problem, but there are some simple rules of great general 
value. 

The nature of the transient response of several pentode stages (identical) 
in cascade is illustrated in Figs. 4-22 and 4-23; both curves are from Valley 

I 0.4 

n = \f 2 /A 6 

0 0.4 0.8 1.2 1.6 2.0 2.4 
t, usee 

Fig. 4-23 Step response of n stages each having \A \ = 1 /V1 + (f/106)1 (1 Me band­
width). 
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and Wallman.1 The stages shown in Fig. 4-22 have no peaking and have 
no overshoot. The response of the stages in Fig. 4-23, on the other hand, 
is the step response of a rather complicated interstage adjusted to have a 
very flat, steady-state amplitude response, with substantial transient over­
shoot in even a single stage. 

The two figures show the general properties of the increasing delay time 
and rise time resulting as the number of stages is increased. Moreover, if 
there is overshoot in a single stage, the amount of this increases as stages 
are added. On the other hand, if there is no overshoot in a single stage, the 
adding of stages will not introduce overshoot (Fig. 4-22). 

The quantitative details are of interest. Various attempts have been 
made to analyze the problem, some based upon an empirical study of cas­
cades of particular circuits.2 The analysis is quite laborious, even if the 
network functions and their inverse transforms are simple, because of the 
arbitrary definition of the rise time in terms of the 10 and 90 per cent 
levels. For instance, the network function for a cascade of resistance-
coupled pentode stages, whose response in time is given in Fig. 4-22, is 
simply 

Tr / \ ÔUTPUT FOR n STAGES / 1 Y* 
VM = -T^y- ' W + l ) V M <4-34) 

To get an answer in terms of normalized time T = 1/RLC, take s = J)RLC 
as the variable. Assume a unit step as the input, V-M = 1/s, 

F " ( s ) " s v h r ( 4 " 3 5 ) 

Inverse transform vn(t) = 1 — e - t 2-, ~~ (4-36) 

(NOTE: 0! = 1.) Equation (4-36) describes the family of curves in Fig. 
4-22. Unfortunately there is no correspondingly simple expression to 
describe the rise time TR as a function of the number of stages; one must 
compute the function i>„(T) for each value of n, determining the time 
between the 10 and 90 per cent levels. Valley and Wallman give the 
results for values of n up to 10. These are given here in Table 4-2. 

1 See also A. V. Bedford and G. L. Fredendall, Transient Response of Multi-stage 
Video-frequency Amplifiers, Proc. IRE, vol. 27, p. 277, April, 1939. 

2 Valley and Wallman, o-p. ext., pp. 65-66, 77-78; Bedford and Fredendall, ibid.; 
H. E. Kallman, R. E. Spencer, and C. P. Singer, Transient Response, Proc. IRE, vol. 
33, pp. 169-195, March, p. 482, July, 1945; D. G. Tucker, Bandwidth and Speed of 
Build-up as Performance Criteria for Pulse and Television Amplifiers, / . IEE, vol. 94, 
pp. 218-226, May, 1947. 
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No. of stages, N 

1 2 co
 j 

4 5 6 7 8 9 10 

* 1.0 1.5 1.9 2.2 2.5 2.8 2.9 3.14 3.27 3.54 
t 1.56 1.91 2.2 2.46 2.7 2.91 3.11 3.3 3.48 

* Rise time TR divided by 2.2RC. 
t Approximation by 1.1 ̂ /N as in Eq. (4-38). 

The results of empirical studies such as these can be summarized into 
several working rules, as formulated by Valley and Wallman: 

1. In circuits having little or no overshoot, the over-all rise time TRN 

is approximately given b y 1 

TRN = VTR1
2 + TR2

2 + T R 3
2 + •••+ TRU (4-37) 

la. A better approximation for identical stages (Table 4-2) is 

TRN = 1.1 V n TRL (4-38) 

2. In circuits having little or no overshoot, the total overshoot for n 
stages is essentially that of a single stage. 

3. If the overshoot of a single stage is in the order of 5 or 10 per cent, 
then the total overshoot goes as the square root of the number of stages. 

3a. When the stage overshoot is 5 or 10 per cent, the total rise time is 
somewhat less than that given by rule 1. 
Of the above rules, the first is perhaps the most important. There are a 

large number of cases in which the overshoot must be kept small and one is 
concerned with rise time alone. A valuable contribution to the analysis 
of this case has been made by Elmore,2 putting rule 1 on a somewhat more 
rigorous basis. 

To follow Elmore's analysis, we first redefine the delay time and the rise 
time to be functions which are more readily expressible yet which give 
essentially the same numerical results in typical circuits as the previous 

1 Elmore, OP. CIT. See also related papers: W. C. Elmore, Electronics for the Nuclear 
Physicist, NUCLEONICS, vol. 2, pp. 4-17, February, pp. 16-36, March, pp. 43-55, April, 
pp. 50-58, May, 1948; W. C. Elmore and M. Sands, "Electronics: Experimental Tech­
niques," chap. 3, National Nuclear Energy Series, McGraw-Hill Book Company, Inc., 
New York, 1949. 

2 The Transient Response of Damped Linear Networks, HE. CIT. 

Table 4-2 
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definitions. The delay time Tn is defined in terms of the impulse response, 
or, what is the same thing, the derivative of the step response. In Fig. 4-24 
is shown a step response v(t) and in Fig. 4-25 its corresponding impulse 
response v'(t). The 50 per cent level of v(t) was the previous definition of 
TD ; the maximum of v'(t) might have been equally good and would give the 

t t 
Fig. 4-24 A. typical step response. Fig. 4-25 Impulse response correspond­

ing to the step response of Fig. 4-24. same value of TD in many cases. Instead of either of these, however, 
Elmore uses the centroid of the area under v'(f), 

1- 0 0 

/ tv'if) dt 

TD = (4-39) 
/ v'(t)dt 

Jo 

or, for a normalized step response v(t) of height 1.0 as in Fig. 4-24, 
/•oo 

TD = / tv'{t) dt (4-39a) 
Jo 

It should be noted that this definition is not well suited to functions v(t) 
that have overshoot, for in such cases there would be negative areas occur­
ring in v'(t) and these would improperly alter the value of TD- Hence this 
definition and the derivations to follow should be restricted to monotonic 
or non-overshoot responses. But to judge by the results of the empirical 
studies referred to previously, the results can probably be applied to cases 
of small overshoot, say less than 5 per cent. 

The new definition of rise time TR is based upon a quantity known as the 
"radius of gyration" in kinematics or as the "standard deviation" in 
statistics, 

/• 0 0 

TR
2 = const X / (* - TD)2v'(t) dt (4-40) 

•>0 
/•oo 

[Note that / v'(t) dt = 1 is implicit in the denominator.] The value of 
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area under v'(t) 
max value of v'(t) 

(4-41) 

An alternative form of Eq. (4-40) with the constant inserted is 

/ t2v' 
Jo 

( 0 dt - TD
2 (4-42) 

Before proceeding further with the analysis, it might be well to see what 
kind of numerical values come out of these definitions for TD and TR and 
compare them with previous definitions: 

RC stage Shunt-peaked 
stage, m = 0.25 

To: 
Defined as t/RC to 5 0 % level 0.7 0.6 
Defined by Eq. (4-39) 1.0 0.75 

TR: 
Defined as t/RC between 10 and 

9 0 % levels 2.2 1.57 * 
Defined by Eq. (4-42) 2.5 (V2ir) 1.66 f 

* Improvement over RC is 1.4. 
t Improvement over RC is 1.51. 

As can be seen, the two definitions of TR agree moderately well. The 
agreement would be even closer for a large number of resistance-coupled 
stages because of the basis for selecting the constant 27r. 

Now we come to the problem of determining the rise time and delay time 
for a cascade of stages. We do not yet know how the time responses for 
several stages combine, but we do know that the voltage gains Ai(p) com­
bine as a continued product in a cascade of amplifier stages consisting of 
ideal pentodes as unilateral coupling elements separating the interstage 

1 In this ease the response v'it), as well as v{t) and the steady-state amplitude response 
approaches a gaussian error function; see Valley and Wallman, op. cit., pp. 723-724. 

the constant can be chosen arbitrarily to make the numerical values come 
out right. Elmore uses 2w, because this makes the rise time computed for 
an infinite number of resistance-coupled stages 1 agree with the value 
obtained for the rise time in terms of the maximum slope, which is 
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networks. Thus, the gain function for a cascade of n stages (see Fig. 4-26) 
as a function of the complex frequency variable p is given by 

V0(p) i = i 
(4-43) 

where Vo(p) = voltage at input of 1st stage 
Vn(.p) = voltage at output of nth stage 
A-iip) — g a m function of rth stage = F s (p ) /F»_i (p ) 

The next step is to normalize each of the At{p) by dividing by —GMRL, so 
that the normalized gain for each stage is unity. Then we drive the circuit 

+ 1 
V.-i 

1 - I 

1st stage ith stage nth stage 

Fig. 4-26 Nomenclature for the stages in a multistage amplifier. 

with a unit impulse, i.e., the time derivative of a unit step, so that V0(p) 
= 1.0 (which is the Laplace transform of the unit impulse). 

«n(p) = Vn(v) = I T Oi(P) = (4-44) 

Normalized 
over-all gain 
function 

Normalized 
gain function 
of the ith 
stage 

We take next the general expression for the Laplace transform, expand 
t~pt in a power series, integrate term by term, and gather and identify 
terms with the definitions of Eqs. (4-39) and (4-42). 

<»»(?) = Vn(p) = / v'n(t)e-pt dt 
Jo 

(pt? 
= / V'n(t) 

Jo 
l~pt + 

= 1 - p / tv'n(t) dt-\ / t2v'n 
Jo 2! Jo 

dt 

2v'n(t) dt - • 

)- (4-45) 
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where TDN — delay time of n stages 
TRN = rise time of n stages 

Note however that a similar relationship holds for the ith stage (one stage 
only). ^ 

atip) = 1 - pTDi + ~ + TDA (4-46) 

Now, since an(p) is the continued product of the a,-(p), we take a continued 
product of series like Eq. (4-46) and gather terms in like powers of p, giving 

n 

<*n(P) = I I Oi(P) 
1 

(4-47) 

Finally, we compare Eqs. (4-45) and (4-47) and equate the coefficients 
of the p and p2 terms, giving the following results: 

n 
TDN = £ TDi (4-48) 

I 

n 
TRN

2 = Z TRi (4-49) 
I 

The important result of Eq. (4-49) verifies the previous equation (4-37) in 
showing that the over-all rise time is the root mean square of the individual 
rise times of the stages. And Eq. (4-48) shows that the over-all delay time 
is the simple sum of the individual stage delay times. 

Some of the by-products of Elmore's analysis are of interest. For 
instance, if one has a cascade of similar stages, should all stages be designed 
for the same gain and the same rise time, or might something be gained by 
having high gain and slow speed in one stage but counterbalanced by low 
gain and high speed in another stage? The answer apparently is that the 
minimum over-all rise time for a given gain is achieved by making all stages the 
same (see Sec. 4-10). The proof involves the use of Lagrange's method of 
undetermined multipliers, operating upon Eq. (4-49) and another equation 
which results from the fact that the rise time of each stage is proportional 
to the gain, since both are proportional to RL-

n n 
I I Ai ~ JJ TRi = const for specified gain 

I i 
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For the condition of all stages identical, a simpler form of Eq. (4-49) is 

TRN = TRI VN (4-50) 

Another interesting result is that there can be found an optimum gain 
per stage in order to achieve a given over-all gain with the minimum over­
all rise time. This gain per stage is \ / e = 1-65 and is derived as follows: 

TRN = \Tn TRI 

A/TR 

Ai 

Vgm/V2T C 

= Vn~ 
(An)1'" 

TV^Tc ( 4 " 5 1 ) 

where J? = efficiency compared with RC stage (as in Fig. 4-3). 
Solve for dTRN/dn, and equate to zero to find TRN< m i n . The minimum 

value of TRN for a specified An occurs when 

n = 2 In An (4-52) 

Ai = An
1/n = An

ll(-2 l n A » ' = ey* = 1.65 (4-53) 

V2« ln An 

TRN, m i n = / — (4-54) 

Note that Eq. (4-54) gives the rise time according to Elmore's definition; 
for the 10 to 90 per cent value, replace y/2ir by 2.2. 

The relationships given above have some practical limitations and require 
some judicious interpretation and application. First note that n has the 
same value, regardless of tube type or circuit type; for instance, if An is 
105 (100 db), Eq. (4-52) says that 23 stages are called for, whether one uses 
6AU6 or 6AH6 tubes. But it does not say that the same minimum rise time 
results in either case; from Table 4-1 and Eq. (4-54) it will be found that the 
6AU6 would give 25k63> o r 1-57, times as great a rise time as the 6AH6. 

Also, the minimum of the rise-time function in Eq. (4-51) is a broad one, 
and one can violate the minimum conditions by quite a margin without 
serious detriment to the over-all rise time. Elmore provides an example 
of a 6AC7 amplifier (gm = 0.009 mho, C = 22 pf, n = 1.5) in which the 23 
stages required for the 100-db gain give a rise time of 0.032 usee; yet, with 
only 9 stages to give the same gain, the rise time is 0.044 /usee. Thus, the 
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rise time is impaired only 37.5 per cent for a 48 per cent reduction in the 
number of stages. Moreover, the larger load resistor in the latter case (400 
ohms instead of 180 ohms) permits a larger output voltage to be realized 
from the amplifier (222 per cent greater). 

4-10 Amplifiers with Nonidentical Stages. The conclusion that 
an amplifier should be made up of identical stages for minimum rise time is 
obtained by an analysis which is invalid if any of the stages has overshoot. 
Hence there would seem to be the possibility of designing an amplifier in 
which some stages have large overshoots (large m) coupled to other stages 
which tend to reduce the overshoot. Attempts to design such an amplifier 
on the basis of the steady-state amplitude response have usually resulted in 
amplifiers with excessive over-all overshoot.1'2 Designing the amplifier on 
the basis of a linear steady-state phase response gives an excellent transient 
response;3 however, the most straightforward data to interpret for the 
transient case are given by F. A. Muller.4 Either the linear-phase response 
or the Muller data give a faster amplifier than is obtained by using identical 
stages. Since the Muller data have the advantage of giving a specified 
overshoot, they will be presented here. Each stage of the amplifier is a 
shunt-peaked stage (Fig. 4-2a, where L may be zero in some stages). The 
data for each stage are given in terms of m = L/RL2C, as before, and a 
normalized r which is defined as 

r< 4 7 " ^ (4-55) 

(r1r2r3 • •• T„) 
where n = Ri(Clti + C2.i) = Rfii (4-56) 
In Eq. (4-56) is the total capacitance, and Ri is the load resistor of the 
ith interstage. Table 4-3 gives the value of r» and TO; (where m; = Li/R2d) 
for each stage. The rise time of the whole amplifier is given in normalized 
form as TX. The actual rise time TRN of the whole amplifier is given by 

TBN = (rir2t3 • • • rn)llnTi (4-57) 
If the amplifier is to be designed for a given over-all rise time and the gm 

and Ci of each stage are known, the load resistor for an individual stage is 
„ UTRN 
Ri = ĉr (4-58) 

' A . Eastern, Stagger Peaked Video Amplifier, Electronics, vol. 22, p. 118, February, 
1949. 

2 J. H. Mulligan, Jr., and L. Mautner, Steady-state and Transient Response of Feed­
back Video Amplifiers, Proc. IRE, vol. 36, pp. 545-610, May, 1948. 

3 G. A. Caryotakis, Iterative Methods in Amplifier Interstage Synthesis, Stanford 
Electronics Lab., TR-86. 

4 Muller, op. cit. 
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Over­
shoot, % r\ ri. ni2 rs TO3 r 4 - rb Ti 

2 stages 0.482 1.400 2.073 0.325 1.58 
3 stages 0.252 4.434 1.058 0.953 3.754 0.318 1.78 
2 stages, 

0.252 4.434 1.058 0.953 3.754 0.318 1.78 

1 coil I 0.838 0.753 1.190 0 1.91 
3 stages, 

0.838 0.753 1.190 0 1.91 

2 coils I 0.335 3.087 1.580 0.565 1.889 0 1.92 
5 stages, 

0.335 3.087 1.580 0.565 0 1.92 

3 coils 0.135 16.5 0.63 1.90 2.23 0.51 2.30 2.28 0.135 16.5 0.63 1.90 2.23 0.51 2.30 2.28 

The resulting over-all gain is 

A TT D ^j9m.iriTBN 

An = 1 1 gm.iRi = 1 1 — — 
1 1 1/ J- »'l 

/ TBA'N" -A- gm,i 

since 
n 

n n = i 

(4-59) 

If the stages have identical capacitances and gm's, the above equation 
reduces to 

/TENgm\n _ (TEN gm\ 
(4-60) 

On the other hand, if the over-all gain is specified, the individual load 
resistors are given by 

Ri = ci 

The resultant over-all rise time is 

TEN = Ti 

An 

l / n 

(4-61) 
I I (dm.i/Ci) 

1 

An 

n 
I I (gm,i/Ci) 
1 

l / n 

(4-62) 

TABLE 4-3 
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If the stage gm's and capacitances are again identical, we obtain 

Ri — 

TRN = 
gm/C 

(4-63) 

(4-64) 

As may be seen from the data in Table 4-3, the rise time of a multiple-
stage amplifier using these "staggered-peaking" techniques increases much 
more slowly than as the y/n. Muller notes that the increase in rise time 
is more nearly proportional to nH. 

A specific example will indicate the advantages of the stagger peaking. 
Comparing the rise time of a five-stage amplifier using shunt peaking 
(m = 0.315 to give approximately 11 per cent over-all overshoot) with the 
rise time of a five-stage staggered amplifier having the same gain but with 
coils in only three stages, we find that the ratio of over-all rise times is 1.4:1. 
Thus the staggered amplifier is faster and has fewer elements. If the 
amplifiers are compared for the same over-all rise times, the ratio of the 
gains obtained is (1.4) 5 = 5.4; thus the staggered amplifier has about 14.6 
db more gain. Staggered amplifiers with fewer stages show significant but 
less dramatic improvement. 

Note that the value of m is great enough in some stages to cause enormous 
overshoot (m = 16.5 in stage 1 of the five-stage example); hence the 
previous analysis by Elmore is here invalid. The order of stages is of little 
importance if high output level is of no consequence. However, a stage 
with large r* may be used for the output stage to provide a larger available 
output voltage. Stages with large r* at the output end of the amplifier have 
a large overshoot in their input waveform which may cause overdriving of 

One stage 
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Fig. 4-27 Pole positions for a staggered video amplifier. Each amplifier gives a 1-sec 
rise time and 1 per cent overshoot. (All coordinates in radians per second.) 
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the grid. Thus it is impractical to 
use the advantage of the large load 
resistance to the fullest extent. 

4-276. 

Fig. 4-28 Frequency response corre­
sponding to the pole positions of Fig. 
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There is some advantage in using a 
stage with high r; for the input stage, 
too, since this gives large stage gain 
to help overcome noise in subsequent 
stages. As a consequence of these 
two considerations, the stages with 
large amounts of peaking (the stages 
with the largest m and lowest r,-) are 
best placed in the middle of the 
amplifier. 

The pole-zero diagrams for these stagger-peaked amplifiers show that the 
poles lie very nearly on a line of constant a. Three examples of the pole-
zero diagrams are given in Fig. 4-27. Each of these sets of pole locations 
yields an amplifier with 1 sec rise time and 1 per cent overshoot. The 
amplitude response for the two-stage (each stage peaked) example is shown 
in Fig. 4-28. 

Presumably the same sort of improvement in multistage amplifiers could 
be achieved in a transistor amplifier. However, the situation with tran­
sistors is much more complicated because the position of the zero in a shunt-
peaked stage does not bear a constant relation to the real part of a complex 
pole as it does in the vacuum-tube case. In a shunt-peaked vacuum-tube 
stage Zi = 2 Re pi, where zx and pi are the zero and complex pole 
positions. Hence the Muller data cannot, in general, be directly applied 
to the transistor case. 

4 - 1 1 OUTPUT STAGES. Most amplifiers have, in addition to the require­
ment for a certain amount of gain between input and output terminals, a 
requirement for the amount of voltage (or power) that may be needed at 
the output. The maximum output voltage is limited by the amount of 
plate current that can flow through the load resistor of the last stage. The 
highest value that can be achieved—without regard to the requirements of 
linearity—is that of a step function which carries the plate current from 
zero to the maximum rated value for the tube. This rated value differs 
from tube to tube, and one would tend to choose a tube with a high current 
rating. But since the rise time of the output stage enters into the total 
rise time of the amplifier, one must consider this factor as well. Several 
tubes can therefore be compared on the basis of a new figure of merit suit­
able for output stages as proposed by Wallman; 1 this is the ratio of maxi­
mum voltage output to rise time and depends upon the output capacitance 
C0 of the tube and the capacitance of the load CL- AS an example, several 

1 Valley and Wallman, op. cit., pp. 103-104. 
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Tube ^ b . m a x j H I S . Co volts,Vsec* 

6AU6 10 5 182 
6AK5 10 3 200 
6CL6 30 5.5 248 
6AQ5 45 8.2 725 
6V6GT 45 7.5 750 
6L6G 75 10 1,130 

* Computed for C„ + 20 pf. 

tubes are compared in Table 4-4 for a 20-pf load, such as might be en­
countered with the deflection plates of a cathode-ray tube. 

F m a x = Ib.maxRL (4-65) 

TR = 2.2RL(C0 + CL) (4-66) 

~TR~ = 2.2(C0 + CL) ( 4 " 6 7 ) 

While the data of Table 4-4 give a relative rating to the tubes listed, the 
actual number of volts per microsecond that is obtainable may vary with 
the practical circumstances. The values listed assume either that the tube 
carries rated current with no signal, and that a negative-going step cuts off 
the current entirely, or the opposite of this, i.e., that the current is cut off 
in the quiescent state but turned full on by a positive-going step at the 
grid. If the amplifier must accommodate steps of either polarity, the 
quiescent operating point would accordingly have to be chosen as approxi­
mately Vilb 

A special case exists in which the signals are known to be always pulses 
of a duration that is short compared with the interval between pulses, i.e., 
pulses of low "duty cycle." In such a case it may be possible to exceed 
lb,max on the positive peaks if the tube rating is based upon heating, i.e., 
plate dissipation. Sometimes the rating is based on emission limitations or 
grid current. Each tube needs to be treated as a separate problem. 

Occasionally an output stage must operate into a low-resistance load, 
such as a coaxial cable used to transmit the signal to a distant location. 
Such a cable is usually terminated in its characteristic resistance R0, and so 
the impedance seen from the amplifier is simply a resistance of this value. 
From consideration of the long-time (or low-frequency) response—to be 

Table 4-4 
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taken up in Chap. 5—an unreasonably large coupling capacitor would be 
required with a low value of Ro (notice that R0 corresponds to Rg in the 
analysis associated with Fig. 3 -4) . Hence the output stage is usually 
operated as in either Fig. 4-29 or Fig. 4-30. The cathode-follower arrange­
ment of Fig. 4-29 has the advantage that the coaxial line is at a low d-c 

Line 

^RT.=RO 

Fig. 4-29 A cathode follower driving a line. 

potential. Otherwise the two circuits are comparable so far as transient 
response is concerned.1 

If the output stage must drive a capacitive load, such as an oscilloscope, 
for instance, the cathode follower will provide a smaller rise time. (This is 
at the expense of smaller gain, however, but we are not considering gain 

Line 

Fig. 4-30 A grounded-cathode amplifier driving a line. 

for the output stage. We should if we have alternative ways of providing 
the needed output voltage.) In contrast with Eq. (4-66) , the rise time for 
the cathode follower of Fig. 4 -31 , assuming small-signal operation, is 

TR = 
2.2Cr 

G L + ( 1 + v)/rv 

2.2RL,CL 

1 + gmRh 
if ix + 1 (4-68) 

1 For an interesting commentary, see P. I. Richards, Cathode-follower Fallacies, 
Rev. Sci. Instr., vol. 21, p. 1026, December, 1950. 
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It should be pointed out that, with 
a large capacitive load, it is some­
times feasible to use several output 
tubes in parallel with improved per­
formance. The current is doubled 
by adding the second tube, but the Fig. 4-31 An equivalent circuit for 
total capacitance is increased by a small-signal cathode-follower operation, 
smaller percentage. 

Also, it may be that for a given specification of output voltage and rise 
time there will be several tube possibilities that would be satisfactory. In 
such a case it would be reasonable to introduce other factors into the com­
parison, such as gain and input capacitance, the latter influencing the rise 
time and gain of the preceding stage. 

4 - 1 2 Transient vs. Steady-state Response. Here we have a topic 
of long-standing theoretical interest and one of considerable practical impor­
tance. The state of our knowledge is substantial but unfortunately is not 
reducible to a few simple axioms. Although a full-scale recounting of the 
published papers is not practicable here, the results can be summarized and 
a few common misconceptions pointed out. 

Rise Time vs. Bandwidth. For many years the term "wideband" has 
been used to describe the type of amplifier one builds in order to obtain a 
fast response to a step transient, especially in the television art. The 
various empirical studies have shown a general relationship between rise 
time and bandwidth to exist as follows: 

TRB = 0.35 to 0 .45 (4-69) 

where TR = rise time, 10 to 90 per cent 
B = bandwidth, from 0 to upper 3 db frequency 

In Eq. (4-69) the value of 0 .35 matches best those circuits where the 
overshoot is small or zero, while 0.45 corresponds to overshoots of, say, 5 
per cent or greater. 

Theoretical analysis of two idealized situations yields values of TRB that 
compare favorably with Eq. (4-69). The first of these is the so-called 

"ideal filter," having a characteristic 
as shown in Fig. 4-32. Associated 
with the amplitude characteristic as 
shown is a phase shift increasing 
linearly with frequency, i.e., con­
stant time delay for all frequencies 

Fig. 4-32 "Ideal" filter-amplifier ampli- transmitted. Such a response is not 
tude response. physically realizable; this is proved 
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by Wallman1 but is also apparent 
from the fact that when a step func­
tion is applied at t = 0 the computed 
response shows finite output prior to 
this time. The nature of the step 
response is a sine-integral function, 
yielding always 9 per cent overshoot 
and TRB = 0.51. 

Another amplitude response of 
theoretical interest is the so-called 
gaussian function shown in Fig. 4-33. 

Once again we associate a linear phase characteristic with this amplitude 
response, and once again the combination is not physically realizable (al­
though the amplitude characteristic is achieved in the limit by an in­
finite number of resistance-coupled stages). The response of a system of 
this kind to step function is also a gaussian function, possessing zero over­
shoot, and 

Frequency 
Fig. 4-33 Gaussian amplitude response 

TBB = 0.41 (0.33 from Elmore's definitions) (4-70) 

The conclusions to be drawn from these results are that, for a given kind 
of circuit, and for the same amount of overshoot, a faster rise is obtained with 
a greater bandwidth. However, merely increasing the bandwidth without 
regard to overshoot does not necessarily lead to "better" response. Thus, 
taking a given amplifier whose amplitude response may be a gradually 
decreasing function of frequency and attempting to speed it up by adding 
compensating elements in order to make its response wider and squarer 
(like that of Fig. 4-32) will indeed speed up the amplifier because of the 
higher value of the TRB product, but the resulting overshoot may render 
the amplifier worthless for the intended application. 

Transient Distortion vs. Steady-state Distortion. An ideal amplifier from 
the transient view would have zero rise time and no overshoot. An ideal 
amplifier from the steady-state view would have an amplitude response that 
would be constant to infinite frequency and phase shift proportional to 
frequency. The condition in which these ideals fail to be achieved is 
termed "distortion." The transient distortion is described in terms such as 
rise time and overshoot, whereas the steady-state distortion can be de­
scribed as "amplitude distortion" 2 and "phase distortion." A distortion 
in either the amplitude or the phase characteristic will lead to transient 
distortion. This fact is not obvious, and several analyses will be found in 

1 Valley and Wallman, op. cit., pp. 721-723. 
2 Sometimes called "frequency distortion" by authors who use "amplitude distortion" 

for nonlinear effects. 
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the literature that examine the relative importance of the types of distortion; 
we shall shortly consider two of these analyses. 

Actually, of course, in most simple amplifier interstage networks of the 
type already presented in this section the amplitude and phase responses 
are interrelated in a manner characteristic of the broad class of networks 
identified by the term "minimum phase." It will not be possible here to 
go into the details of the definition of this terminology, nor into the details 
of the amplitude-phase relationship. Suffice it to say that feedback circuits, 
lattice and bridged-T structures, and distributed-parameter systems are the 
ones usually falling outside the minimum-phase class.1 Thus, it is some­
what futile to attempt to place the blame for transient distortion upon 
either the amplitude distortion or the phase distortion alone. Nonetheless, 
it is instructive at least to assess that distortion due to amplitude response, 
for it is possible—and indeed common practice on complicated transmission 
systems—to exploit a device known as a "phase equalizer." By use of this 
device, which is an all-pass network of the non-minimum-phase class, it is 
feasible to make the phase response more nearly linear, without influencing 
the amplitude response. The use of such equalizers is far beyond the scope 
of this treatment, although they are of great importance in long-distance 
television transmission systems. In fact, it might be said that their utility 
lies in systems that are limited to narrow frequency channels rather than 
in wideband systems where the gain/rise-time quotient of the amplifier 
tubes is the limiting factor.2 

Of the various analyses that have been undertaken, it will be possible to 
include only two here, namely, those of Wheeler3 and DiToro. 4 The first 
of these is suitable for small amplitude or phase distortion, or combinations 
of both, whereas the latter is more suited to large distortions. 

Before plunging into the details of the Wheeler and DiToro papers, it 
might be well to remind the reader that there are well-established relation-

1 A basic reference on the subject is H. W. Bode, "Network Analysis and Feedback 
Amplifier Design," D. Van Nostrand Company, Inc., Princeton, N.J., 1945. The rela­
tionship between amplitude and phase stems from a basic property involving the real 
and imaginary parts of a class of complex variables; see E. A. Guillemin, "Mathematics 
of Circuit Analysis," pp. 330-349, John Wiley & Sons, Inc., New York, 1950. A brief 
discussion is also to be found in Terman, op. cit. 

2 Two references of interest on phase equalizers are T. C. Nuttall, Some Aspects of 
Television Circuit Technique: Phase Correction and Gamma Correction, Bull, assoc. 
Suisse eleclriciens, vol. 40, pp. 615-622, Autumn, 1949; G. G. Gouriet, V.H.F. Amplifier 
Couplings, Wireless Engr., vol. 27, pp. 257-265, October-November, 1950. See also 
Bell System publications. A. E. Brain, The Compensation for Phase Errors in Wide­
band Video Amplifiers, Proc. IRE, vol. 97, pp. 243-251, July, 1950. 

3 H. A. Wheeler, The Interpretation of Amplitude and Phase Distortion in Terms of 
Paired Echoes, Proc. IRE, vol. 27, pp. 359-385, June, 1939. 

4 M. J. DiToro, Phase and Amplitude Distortion in Linear Networks, Proc. IRE, vol. 
36, pp. 24-36, January, 1948, includes an extensive bibliography. 
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ships between the transient and the steady-state responses. These are the 
Fourier series and integral, and the Laplace transformation. Choice among 
them depends upon the nature of the driving function and the initial con­
ditions of the system. Not only are these relationships fundamental to the 
analyses about to be examined, but they are useful in circumstances where 
it is possible to measure in the laboratory one kind of response only but 
where one wishes to find the opposite response by computation. For 
instance, if one can measure the amplitude and phase response and wishes 
to compute the step response, the Fourier series or integral can be used.1 

In the paired-echo analysis the amplifier is driven by a transient signal 
v\(t) which is chosen to have no singularities on the ju axis in the Vi(p) 
domain. Thus, the inverse Laplace transform reduces to the Fourier 
integral as follows: 

vi(t)=— V&Wdp (4-71) 

= ~ f V1(ju)^t do, (4-72) 

2TT . / _ « , 

i r 
|Vi(<o)|e y l"'+* (" ) 1 da (4-73) 

where Vif» = I Vi(w) I e>* ( u ) (4-74) 

Now let the signal be applied to the amplifier, whose steady-state response 
A(Jo>) is as shown in Fig. 4-34. The cosine variation of the amplitude 
response is rather artificial because of its repetitive nature. The linear 
phase shift assumed will not cause any distortion but only a time delay, as 
will be seen. The assumption is that the input signal Vi(ju) has a spectrum 
which virtually vanishes after the first minimum of the cosine; hence the 
rest of the curve is shown dashed. A trapezoidal pulse of suitable slope and 
duration would be a satisfactory signal. 

To obtain the output signal v2{t), we first find V2(ju>) by multiplying 
Vi(j<j>) and A (jco) and then taking the Fourier integral as in Eq. (4-73). In 
the process it will be convenient to expand cos c 0 « in exponentials. 

1 A. V. Bedford and G. L. Fredendall, Analysis, Synthesis, and Evaluation of the 
Transient Response of Television Apparatus, Proc. IRE, vol. 30, pp. 440-458, October, 
1942. Some short cuts suitable for quick appraisal are given by W. J. Cunningham, 
Simple Relations for Calculating Certain Transient Responses, / . Appl. Phys., vol. 19, 
pp. 251-256, March, 1948; G. S. Brown and D. P. Campbell, "Principles of Servo-
mechanisms," chap. 11, John Wiley & Sons, Inc., New York, 1948. 

If it should happen that only the amplitude characteristic can be measured, the cor­
responding phase characteristic can be computed if the networks are of the minimum-
phase variety. See Bode, op. cit.; D. E. Thomas, Phase of a Semi-infinite Attenuation 
Slope, Bell System Tech. J., vol. 26, pp. 870-899, October, 1947. 
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cos co(co) = Yi(^ + rjc«u) 

V2(t) = — f V2(joi)eiat da 

= / V1(ja)A(ja)^t da 

= — [ I 7 I ( « ) I <r+M (— + Oi cos Coco) 6 -^«e» ' " ' rfco 
27T ^_oo V 2 / 

= — f I VI(«) I (— + — eic"u + — t - j c A t^t+<PM~b^] d o } 

totJ-J \2 2 2 ) 

= 1 ^ [~ \ Yx{p)\eM-V>+*™ da 
2T 2 J_J 

\ CL f °° 
+ — - / 1 Vi(u) I ejMi-bo+c^ da 

2TT 2 

1 a /"°° 
+ / \Vi(a)\ jW-h-^ +*<«)! ^ (4.75) 

2T 2 
We now compare Eqs. (4-73) and (4-75), and note that the latter contains 

three terms of the same form, differing only in the constant multiplier ao/2 
or ai/2 and the shift in the time scale from t to t — b0, etc. Thus Eq. 
(4-75) describes three signals (time functions) which have the same wave­
form as the input signal Vi(t) but which are changed in amplitude and 
shifted in time. The result is depicted in Fig. 4-35; it consists of a delayed 
main signal and two "echoes." 

\A(ju •MO 
1.0 

/A(JO>) = - 6 0 « 
v2(t) a ° / 2 I , 

1 a , / 2 1 i r — i 

* M Fig. 4-34 Amplifier response assumed Fig. 4-35 "Paired echoes" resulting from 
for the Wheeler "paired-echo" analysis amplitude distortion, 
(amplitude distortion). 
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A similar result is obtained if phase distortion is introduced, as in Fig. 
4-36. The amplitude characteristic is now assumed to be ideal, i.e., con­
stant amplification from zero to infinite frequency. 

2w J 

1 OL = — / | V^oi) | ê "' — ê-̂+'i s i n c^jat 
2TT 2 

1 a fx 

= _ / | Fi(<o) | tjlaU~b°)

 3in c'w da 

2T 2 

But 

CO 
i = - x 

For bx very small »2(0 
s _ ^ / | Vfa) I ̂ 'l"('-6»)+*M1[Jo(fei) + Jdh)^' 

2T 2 

2 L2TT 7_x 
+ ̂ Ĵ ) [1 I" | ̂ (co) I e*»<«-̂ -K>+*<»>] rfcc 2 L2,7r y _M 

_ ̂ Jl(&1) [1 r |7l(w)|eyi-(«-S»-«.)+*(«)l dec 
2 L2TT y_c» 

(4-76) 

As before, we can now compare the expression (4-76) with the expression 
(4-73) for the input signal vx(t). Each of the three terms of (4-76) corre­

sponds to a replica of the input \A(ju)\=aa/Z function, but modified in ampli­
tude and shifted in time. These  
three output signals are depicted 
in Fig. 4-37 and can be thought 

3 , 2 i = - 6 0 » + & 1 s i n c l « o f a g a p r m c i p a l s i g n a l a n d t w o 

echoes. Notice that one of the 
Fig. 4-36 Amplifier response assumed for e c h o e s i s negative, in contrast with 
the Wheeler "paired-echo" analysis (phase t n e case of amplitude distortion, 
distortion). Thus, the composite output signal 
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will be unsymmetrical for phase distortion and symmetrical for amplitude 
distortion. A comparative case is illustrated in Fig. 4-38; the dashed line 
represents the summation that would result if higher-order terms were in­
cluded in the sinusoidal amplitude and phase expressions, i.e., if the actual 
amplitude and phase characteristics were expanded in series of cosine and 
sine terms, respectively. 

Ul(0 

vJf) j r r_zr a0 

Fig. 4-37 "Paired echoes" resulting from phase distortion. 

The paired-echoes analysis is particularly convenient for small distortions 
(small values of bi, c 1 ( etc.) but becomes cumbersome if the distortion is 
large. It does, however, provide ample evidence that distortion of the time 
response can result from either steady-state amplitude or phase distortion 
and that the effects of the two kinds of steady-state distortion are different. 

Amplitude distortion Phase distortion 

Fig. 4-38 Response of an amplifier to a pulse input when only amplitude distortion or 
only phase distortion is present. 

One analytical study of interest for cases of larger degrees of amplitude 
or phase distortion than are normally treated with the paired-echoes 
technique is that of DiToro.1 He treats the case of an amplifier (or any 
other linear network, not necessarily lumped) having a steady-state re-

1 Op. dt. 
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(4-77) 

This is not the kind of function that emerges from the analysis of lumped-
element amplifier networks; instead rational fractions should be expected. 
But it has certain advantages and is a reasonably good approximation to 
the response of actual circuits. Indeed, a large number of resistance-
coupled stages approaches this kind of response, with exponents m = 2 and 

Fig. 4-39 Assumed amplitude response and the resulting transient response from the 
DiToro analyses, (a) Amplitude response, (ft) Impulse response, (c) Step response. 

The expression (4-77) is particularly convenient in treating experimental 
data. The exponents m and n can readily be determined from a logarithmic 
plot of amplitude and phase data. And from DiToro's paper the transient 
response can be forecast. This is also true of the paired-echoes analysis, 
but for smaller distortions; also, as in the case of paired echoes, the DiToro 
analysis permits separate evaluation of the effects of amplitude or phase 
distortion taken singly and together. In fact, DiToro has found it necessary 
in general to find the time response (to an impulse, say) of Eq. (4-77) by 
first finding it for t~~° w , then for e~3'b u , and finally for the combination 
by using the convolution integral.1 

Some examples of the extensive results obtained by DiToro can be shown. 
For instance, in Fig. 4-39a is depicted an amplitude response corresponding 
to m = 2, and also one for m = 4. On the assumption that the phase 
distortion is nil, i.e., that n = 1 and 6 ^ 0 , the corresponding impulse and 
step responses are as shown in Fig. 4-396 and c. 

Similar results for phase distortion—in the absence of amplitude distor­
tion—are depicted in Fig. 4-40. | 

Notice that amplitude distortion leads to symmetrical responses for the 
impulse and step, whereas phase distortion leads to unsymmetrical ones. 

n = 3. 

(a) (b) 

1 M. F. Gardner and J. L. Barnes, "Transients in Linear Systems," pp. 228-236, John 
Wiley & Sons, Inc., New York, 1942. 
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This is comparable to the paired-echo analysis. Notice also that phase 
distortion gives overshoot, even with n = 3, which is the smallest exponent 
possible (except for n = 1, of course, which would give no distortion but 
only a time delay). It should be pointed out that the nature of amplitude 
and phase responses in general requires that m be even and n odd. 

The case of combined amplitude and phase distortion has been analyzed 
by DiToro, as already mentioned. It is necessary to specify, in addition to 
m and n, the relative magnitudes of a and b [see (4-77)]; the relative rates 
of amplitude and phase cutoff influence considerably the shape of the time 

(a) (6) (c) 
Fig. 4-40 Assumed phase response and the resulting transient response from the DiToro 
analyses, (a) Phase response. (6) Impulse response, (c) Step response. 

response. An extensive assortment of results will be found plotted in 
DiToro's paper. 

4-13 Special Amplifiers for High Speed. Although the details will 
be reserved for Chap. 6, it is appropriate to mention here that when fast 
amplifiers are required (amplifiers with small rise time Tg)—faster than can 
be provided by the networks of Figs. 4-2a through 4-12—there is the pos­
sibility of an altogether different kind of amplifier configuration. The 
circuits discussed in the sections above have been of the product variety, or 
cascade, the former term describing the fact that the over-all gain function 
(of frequency p) is the product of the individual-stage gain functions, while 
"cascade" implies that one stage is connected after another. There is 
another class of amplifiers, which can be called additive because of the 
additive nature of their gain functions, and which permit of far greater 
speeds with conventional tubes than the cascade amplifier provides. This 
class includes the distributed amplifier and the split-band amplifier. Re­
search is still being conducted in both these categories, but the present-day 
status will be discussed in Chap. 6. 
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PROBLEMS 

4-1. Apply Laplace-transform analysis to the complete circuit of Fig. 3-3 to determine 
V2(t) if vi(t) is a step of voltage of amplitude Fo applied at t = 0. (Assume that rp ~2> RL, 
Cc,c. » Ci or C 2, and Rg » RL.) 

a. Show that for small values of t the result reduces to the response of the simple 
equivalent circuit of Fig. 3-12a. 

b. Show that for large values of t the result reduces to the response of the equivalent 
circuit of Fig. 3-4. 

4-2. Shown in Fig. P4-2 is the so-called "series-peaking" circuit, or "series-compen­
sated" circuit. This circuit is somewhat more difficult to analyze than the corresponding 
transistor circuit because the extra reactive element makes the circuit equation a cubic. 
However, for a certain case a relatively simple result may be obtained which illustrates 
the kind of results obtainable. 

a. Show that the equation for the transfer impedance may be written in the form 

V 2(p) _ -Rs(Ci + C 2 ) 3 1 

Ji(p) L d C 2 2 C i + C 2 (Ci + C 2 ) 2 ( d + C2)2 

P V Ci V mCiC2 mdC2 

(a) 

This equation is in terms of the normalized variables: p = s R ( C i + C 2), and m — 
L / R \ d + d). 

b. Arrange the poles according to the pole-
zero diagram shown in Fig. P4-2 by finding 
the capacitance ratio and value of m re­
quired. 

HINT: Assume that Ci = nC% and rewrite 
the above denominator polynomial in terms 
of p , n, and m. Express each pole in Fig. 
P4-2 as a factor; i.e., the top pole would be 
p + a — j 2 a . Then multiply the factors 
together to give a cubic. This cubic must 
be identical with the previously obtained 
polynomial; hence, the coefficient of each term 
may be equated to the corresponding term in 
the other cubic. In this way the value of n 
and m may be found. 

c. Find the rise time and overshoot (both 
in terms of a and in real time) produced 
by the circuit when driven by a unit step. 
(The rise time will be about 1.5/a.) This 
computation will have to be done by plot­
ting the response. 

d. Show that the improvement factor over an uncompensated circuit, -q, is slightly 
greater than 2. 

4-3. The over-all normalized gain function for a linear amplifier comprising lumped 
elements will always be of the form 

1 + ctip + A2p2 + Q3p3 -I h a m p m 

n ( V ) ~ 1 + ftp + fop2 + &P 3 + • • • + ftp* 

2a 

(b) Fig. P4-2 
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Show by comparison with Eq. (4-45) that 

TDN = PI — AI 1 
I Elmore definitions 

T\N = - « i 2 + 2(« 2 - M \ 

4-4. Compute the rise-time-bandwidth product for a five-stage resistance-coupled 
amplifier. Obtain the bandwidth from an amplitude response determined graphically 
on the P plane. 

4-5. Show that the equivalent circuit given in Fig. 4-31 is correct. (HINT: Find the 
Norton equivalent looking into the cathode and ground terminals toward the tube.) 

4-6. Refer to the shunt-peaking circuit of Fig. 4-2a. 
a. Write the equation for gain in terms of a constant containing G M , R , L , and C times 

a polynomial containing only S, constants, and the parameter M. (HINT: This will require 
normalizing the frequency variable; the most useful normalization is s = PRC.) 

B. Sketch pole-zero diagrams as in Fig. 4-4, giving the pole and zero positions in terms 
of M. Do this for M < 0.25, M = 0.25, and M > 0.25. Indicate also the limiting pole 
and zero positions as M —> 0 and M —> «>. 

c. For M > 0.25 write the equation for VG2(T) in terms of a constant containing R, L, 

and C times an equation in M. Assume that ugl(i) is a unit step. 
4-7. Consider the transfer function of any linear network, A(P), which is normalized 

so that the gain at zero frequency is unity. The steady-state amplitude response | A{W) \ 
and phase shift 4>(U>) are obtained by replacing P by JOI, 

A ( P ) \ P = ] - „ = |^(«) 

A. Show that the following relationships exist between the amplitude and phase func­
tions and the Elmore definitions of delay time and rise time: 

<P\A{Q>)\ 

dw2 

TR 

2IR 

SUGGESTION: Make use of Eq. (4-45). The above result really indicates that this 
definition of rise time is not of GENERAL utility, since it is quite possible and often desirable 
to design a network or amplifier in which TR = 0 (or even TR < 0) according to the 
above equation; yet the actual 10 to 90 per cent rise time will certainly be greater than 
zero. 

B. As an example, consider the transfer function 

A(P) = 1 

p 2 + V2P + 1 

Find TD and TR. What do you deduce concerning the nature of the time response to 
a step function in the case of this transfer function? 

4-8. The transfer function A(P) = L/(P2 + Y/2P + 1) considered in Prob. 4-7 is also 
known as the two-pole, maximally flat function. (This is discussed further in Chap. 9.) 
The transient response of this function to a step input is given as the curve for N = 1 in 
Fig. 4-23. The rise time is about 2.16 sec, with 4.3 per cent overshoot. 

A. A rise time of 50 mjusec is desired. Find the pole locations of A(P) corresponding 
to this rise time. 

B. These pole locations may be realized by a shunt-peaked pentode stage (which pro­
vides the requisite two complex poles plus an undesired zero) in cascade with an R C 
stage (whose pole can be chosen to cancel the zero). Find the required element values 
for each stage if the total shunting capacity per stage is 15 pf. 
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c. Find the gain of the above amplifier if the tubes used have gm = 10,000 jimhos. 
Compare this gain with the gain of an alternative amplifier having e-qual rise time but 
comprised of two identical shunt-peaked stages with m = 0.35. 

ci. The series-peaked transistor stage of Sec. 4-7 can be arranged to have two complex 
poles and no zero in the finite part of the p plane; therefore these two poles may be ar­
ranged to give the pole locations for the maximally flat interstage. Find the value of L 
in terms of Ri, R^, C, and R which is required to give the maximally flat transfer func­
tion. What is the value of r\ for this function? 

4-9. Consider two amplifiers, each consisting of five identical stages. Similar circuits 
(the same rf) are employed in both, but one amplifier uses 6AH6 tubes and the other 
6AU6's. (Use the data in Table 4-1.) 

a. If both are designed for the same gain, find the ratio of their over-all rise times. 
b. If both are designed for the same over-all rise time, find the ratio of their over-all 

gains. 
4-10. All the transistor high-frequency calculations have been on the basis of an 

approximate equivalent circuit derived from the hybrid pi. One direct way of evaluating 
the accuracy of the simplified circuit with respect to its prototype is to compare the 

Fig. P4-10 

step responses of the two circuits for a given generator and load resistance. For this 
purpose find the equation for the step response for the three conditions listed below. 

a. Neglect Cc (that is, assume that Cc = 0). 
b. Include Cc in the equivalent circuit as in Fig. 3-38c. 
c. Use the hybrid-pi equivalent circuit as shown in Fig. 3-386. In this case, the 

equation for the output will not be a single exponential. Show why one of the exponen­
tials is unimportant so that one pole essentially dominates the response function. 

d. Calculate the 10 to 90 per cent rise time for the three cases above. (Calculate only 
an approximate value for case c, based upon the dominant pole.) As a basis for calcula­
tion use the circuit in Fig. P4-10 and typical transistor data: 1 — a 0 = 0.02; r'e = 25 
ohms; r'0 = 200 ohms; co( = 3 X 107 radians/sec; Cc = 10 pf. 

4-11. Using the high-frequency equivalent circuit of Fig. 2-3, find the The'venin 
equivalent looking to the left of the terminals a-a' of the common-collector stage (emit­
ter follower) shown in Fig. P4-11. (The collector capacitance may be neglected here.) 

a 

+ 
,2oon 

Fig. P4-11 

Note the resemblance to Fig. 2-22. Using the Thevenin equivalent you have found, 
write the equations for Vi{p) and vi(t). Show that the effect of the capacitance l/aart 

would usually be small. Neglecting the effect of this capacitance, compute the rise time 
for the source and load shown in Fig. P4-11 and the transistor parameters of Prob. 4-10. 



5 
Step Response of Lowpass Amplifiers 
for Large Values of Time: Sag, etc. 

The failure of practical amplifier circuits to transmit a step function 
perfectly for large values of time is in one sense a failure of the circuits to 
transmit direct current or, what is almost the same thing, very low fre­
quencies. The long-time response to a step is generally better if the so-

Fig. 5-1 Pentode amplifier stage including all causes of sag. 

called low-frequency response of the amplifier is good. Indeed, most 
discussions of the subject in textbooks are phrased in terms of the low-
frequency steady-state behavior, as in Chap. 3. However, the step response 
is often the desired criterion, and it can be dealt with directly. For an 
example, in a television system, a picture in which there is a background 
(sky, for instance) with uniform intensity across the scene would require 
that the video amplifiers maintain a virtually constant voltage for the 
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Fig. 5-2 Common-emitter stage in­
cluding all sources of sag. 

duration of each horizontal scan pe­
riod; thus, for an interval of about 60 
yusec the step response must be con­
stant to within some specified sag. 
The corresponding low-frequency be­
havior is purely incidental, and specifi­
cation of the amplitude and phase 
response at low frequencies is at best 
indirect and not necessarily unique for 
a given sag. 

It was shown in Chap. 3 that there 
are only certain portions of the com­
plete circuit of Figs. 5-1 and 5-2 that 

influence the long-time behavior; thus, the simplified circuits of Figs. 3-4 
and 3-33 adequately describe the low-frequency amplitude response or. 
the long-term step response. These circuits contained only the coupling 
elements Ccc and either Rg for the pentode or Rg and the resistances 
Rg and r& + re/ (1 — a) for the transistor, whereas in a practical am­
plifier circuit it is necessary to consider also the pentode cathode (tran­
sistor emitter) bias circuit and the imperfectly bypassed screen-grid volt­
age supply. These will be taken up individually; the analysis follows 
closely that of Wallman.1 

5-1 Coupling Circuit. The effect of the coupling circuit on the 
amplitude response has already been studied in Chap. 3. In terms of the 
vacuum-tube circuit first, the gain of a stage, considering only the effect 
of the coupling elements shown in Fig. 3-4, was found to be 

A = —gmRL 
V 

V + 1/flgCc, 
(3-9) 

The output voltage is found by multiplying the Laplace transform of the 
input voltage (in this case a step voltage Vx/p) by the gain and taking the 
inverse transform, 

• _ Vi V 

—gmtiL • v2(t) 
v P + l/ReCc 

= -gmRLVxi-tlR^ (5-1) 

The output is therefore an exponential with an initial value of — gmRi,Vx 

which decays to zero with a time constant of RgCcc. In considering multiple 
stages it is convenient to normalize the gain so that the midband gain is 

1 G. E . Valley, Jr., and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, M.I.T. 
Radiation Laboratory Series), pp. 84-92, McGraw-Hill Book Company, Inc., New York, 
1948. 
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unity and then to drive the amplifier with a unit step. Under these con­
ditions the output of an n-stage amplifier is 

l(->—)m 

p\p + l/Tj 
where 

V \p + 1/77! 

T\ — RgCcc 

(5-2) 

The frequency variable may also be normalized—define s = pT\. Equa­
tion (5-2) then becomes 

Vn(s) = 
( « + D " 

The inverse Laplace transform of Eq. (5-3) is 

= v„(t) 
d«-l r tn-l-t -, 

dtn . ( n - 1)1 

(5-3) 

(5-4) 

For specific values of n this equation gives the following for vn{t): 

n Initial slope wn(0 +) 

1 - 1 
2 e-'U - 0 - 2 

3 - 3 

4 
\ 2 6 / 

- 4 

The situation regarding initial slope is of particular interest, since this 
determines the sag. It can be seen from the table above that the slopes 
(or sags) are additive. That is, the sag will increase directly with the 
number of stages. This is also true for the case of nonidentical stages and 
may be easily shown as follows: Assume that the different stages have time 
constants of Tu T2, ..., Tn. Then Eq. (5-2) becomes 

Vn(v) = 
V V 

p p + 1/71! p + 1/Ta V + 1/Tn 

(5-5) 

The initial slope of the output voltage is easily found using the Laplace 
transform, 

V'n{p) = pVn{p) - Vn(0+) (5-6) 
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where R = R. + 

p + 1/RCCC 

[rb + r./(l - a)]R 

rb + r«/(l - « ) + «! 
The initial slope of the output of such a stage in response to a step is 
— 1/RCCC) as in the case of the vacuum-tube amplifier. For convenience 
the initial slope is often given in per cent per unit time equaling —100 per 
cent/T; that is, if T = 10,000 usee, the sag is —0.01 per cent//isec, —10 per 
cent/msec, or —10,000 per cent/sec. 

5-2 Sag from Other Sources. Additional sources of sag in an ampli­
fier come from the biasing circuits—the cathode (or emitter) bypass capac­
itor and the screen bypass capacitor. Since we have already written 
equations describing the effects of these impedances in Chap. 3, let us find 
a general equation for sag in terms of the gain equation. An equation with 

[vn(0+) is the value of vn immediately after the input step is applied; that 
is, vn(0+) = 1.] 

pn 

V'n(p) = • - 1 

(P + l/rofo + i/Ta) •••(? + i/r.) 
p - _ (p- + p « - i ] ^ l + . . .) 

i i j 
= — : ( 5 - 7 ) 

p^ + p " - 1 £ - + . - . 
1 1 i 

v'n(0+) = lim pV'n(p) 

p —»00 
= - S ^ = - ^ ^ 7 7 (5-8) 

Equation (5-8) shows that the slope of the output is indeed the sum of the 
individual stage contributions. 

In the case of transistor stages, the function describing the behavior of 
many stages is not exactly the product of the individual gain functions 
because of the presence of reverse transfer parameters. However, as we 
have already seen in Chap. 3, the effect of neglecting the transfer param­
eters is small in common-emitter or common-base stages. Hence, in these 
cases the sags due to the individual stages obviously may be added. The 
sag contribution of an individual CE stage may be found by use of Eq. 
(3-71), which is repeated here, 

V 
(5-9) 
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sufficient generality to include any source of sag is 

(P + <Tl)(p + <r2) • • • (p + <Tn) A(p) ( P + e i ) (p+ e2) ••• ( P + (m) m = n (5-10) 

where a and e are real and positive. 
Treating this equation in a manner similar to that used to find the initial 

slope of Eq. (5-5) gives 

Vn 
(5-11) 

Note that this gives the same results as Eq. (5-8), where all the <r8- = 0. 
Using Eq. (5-11), we may now find the sag due to the cathode capacitor Ck-
From Eq. (3-65) we have 

P + 1/RtPk A{V) « 

P + 
l + gmRk 

(3-65a) 

RkCk 

v'2(0+) = ffi - «i 

1 

l + gmRk —(, RkCk RkCk Ck 

(5-12) 

Hence we have the surprising result that the initial slope of the sag due to 
Ck is independent of Rk- While this is true, the exact effect of the sag is 
dependent upon the value of Rk, as illustrated in Fig. 5-3, which shows the 
effect of changing Rk while gm and Ck are maintained constant. 

The equations describing sag from the screen circuit and emitter circuit 
are tabulated in Table 5-1. As may be seen by inspecting the table, the 
initial slope of the sag caused by the screen circuit is also independent of 
the screen dropping resistor Rs. The equations for the transistor appear 
complicated but may often be simplified when specific values of the param­
eters are known. The waveforms of the sags due to the cathode (emitter) 
and screen bypass capacitors are similar, and Fig. 5-3 is representative. 

l.o 
vM) 

£ii+g„,ie4 = i 1.25 

Fig. 5-3 Step response of pentode amplifier showing the effect on the sag due to chang­
ing Rk. (Ck and gm are fixed.) 
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Cause Gain equation Equation 
number % sag/sec 

Vacuum tube: 
Coupling circuit. 

Cathode circuit.. 

Screen circuit. 

Transistor (common 
emitter): 

Coupling circuit. . 

Emitter circuit. 

V + \/RGCCC 

P + 1/RKC 

V + 
1 + QMRK 

RKCK 

P + \/RSCS 

V + 
Rp2 R. 

TPIRSCS 

V 

P + L/RCCR 

„ , [N + REJ{\ A)]RI 

RH + RE/(\ - A ) + R I 

P + L/RECE 

RS + RE/(L - a) 

(3-3), (3-9) 

(3-65o) 

(3-85) 

(3-71), (3-72) 

(3-70) 

V + 

RS = + RB + 
i -

RGCCC 

-gm 100% 
CK 

- 1 0 0 % 

^ 1 0 0 % 
RCCC 

- 1 0 0 % 

RSCE(\ — a) 

The parameter J in the figure, which determines the ratio of the initial value 
of v2(t) to the final value for the different sags, is 

„ . . rp2 + Rs 

Screen circuit £ = (5-13) 

Re 
Emitter circuit ? = 1 H (5-14) 

Rs(l — a) 

A RsR\ TO 
Rs = ̂ -̂ r + rb + 

Rg + Ri 1 — a 

The sag may be computed from the equations giving per cent per unit 
time only for times sufficiently short to make the representation of the 
output v2(t) by a tangent line valid. Therefore, only for the time interval 
t <3C r is our representation good, where t is the time constant in the denom­
inator of each of the gain equations in Table 5-1. For instance, in the 
cathode circuit the important time constant is RjcCkfil + gmRk)-

5-3 Sag from Multiple Sources. We have already seen that where 
gain functions (functions of frequency) can be multiplied as in Eq. (5-5) 

Table 5-1 
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[and proved for the more general case in Eq. (5-10)] the initial slope of the 
output is the sum of the initial slopes of each sag-producing element. Thus 
the slopes caused by the cathode circuits and coupling circuits in a chain of 
pentode amplifier stages can be very accurately added together because the 
over-all gain function is very nearly the product of the individual gain 
functions, as discussed in Sec. 3-8. Surprisingly enough, the initial slopes 
caused by any combination of causes in an amplifier may be added to give 
exactly the initial slope of the sag in the output of the amplifier. This is 
true even though the low-frequency cutoff is not given exactly in many cases 
by combining the individual amplitude-response functions. 

A simple proof that initial slopes from any source of sag may be added 
is as follows: Assume a network made up of linear R, C, and active elements 
(no inductive elements). Assume that the network is discharged initially 
and is driven by a unit step. Each capacitor initially has zero voltage and 
>>c,i(P~) ~ y c , i ( 0 + ) = 0. Hence at t = 0 + each capacitor acts like a short 
circuit, and the currents in each branch of the network may be computed 
by replacing each capacitor by a short circuit and finding the currents in 
the resulting resistive network. The derivative of the voltage appearing 
across each capacitor, the initial current being known, is dvCii/dt = i ; (0 + ) /C , 
(t = 0 + ) . Each voltage v'Cji may be represented by a voltage generator 
having zero magnitude but the above slope. From the superposition 
principle, the output voltage is now found by summing the individual out­
puts caused by each generator acting singly and regarding the others as 
being short-circuited. In our case each generator v'c gives a contribution 
to the initial derivative of the slope of the output voltage. Since in com­
puting the slopes from each cause we have neglected the other causes of 
sag, we have in essence regarded the other capacitances as short circuits. 
Hence to find the total sag we need only sum the individual slopes, 

From the evaluation of the separate causes of slope in the long-time 
response, it becomes evident which of them is the most severe. In the 
vacuum-tube case the cathode circuit is the worst offender for a given size 
of capacitor—as an example, consider a 6AU6 tube in which typical values 
are gm = 5,000 jumhos, rp2 = l/y22 = 23 kilohms, and Rs = 1 megohm. 

Total slope (or sag) = £ individual slopes (or sags) (5-15) 

Screen slope 
- 1 0 0 % 

^ -0.004%/Msec-yuf 

Cathode slope 

23 kilohms X C, 
-W0gm 

= —0.5 -0 .5%/Msec -^f 

- 1 0 0 
Coupling circuit 0.0001%/Aisec-Mf 
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In the transistor case the emitter circuit requires the largest capacitor 
for a given slope. Consider the following typical values: Rg — 500 ohms, 
Rx = 10 kilohms, rb + r e / ( l - a) = 1,750 ohms, 1 - a = 0.02. (There­
fore R = 1,990 ohms, and Rs = 2,226 ohms.) 

-100 
Coupling circuit = ~ — 0.05%/Vsec-/xf 

RCc„ 

Emitter slope = -100 
RsCcc(l - a) 

—2%/jusec-/if 

Fig. 5-4 Circuit for cathode peaking. 

The transistor because of its inherently lower impedance levels requires 
large capacitors. Fortunately the d-c voltage levels which these capacitors 

must withstand are also small, so 
that physically small, high-capacitance 
electrolytic capacitors may be used. 
In many cases even the coupling 
capacitor must be of the electrolytic 
type. If only small amounts of sag 
can be tolerated, better performance 
may be obtained by using no resistance 
in the emitter lead and resorting to 
feedback biasing, as shown in Fig. 3-26. 
[A resistor from the base to a positive 

supply (assuming a PNP transistor) may be necessary so that the resistor 
shown as R/ may be sufficiently reduced to give the necessary bias 
stability.] 

In the vacuum-tube case the cathode bypass capacitor may be removed 1 

to eliminate the greatest cause of sag, but the gain of the stage is also 
reduced by the factor 1/(1 + gmRk)- This reduction of gain is not so great 
as that caused by leaving the transistor emitter unbypassed for typical 
circuit conditions. 

5-4 Cathode Peaking. Where strict requirements on slope make it 
desirable to leave the cathode bias resistor unbypassed, it becomes necessary 
to reevaluate the short-time transient response. In so doing it has been 
found beneficial to add a small capacitor across the bias resistor, instead of 
having none at all. This capacitance is so small, however, that its effect on 
the long-time response is negligible. In the short-time response, though, 
the rise time can be improved, with beneficial effects similar to those of 
shunt peaking, and hence the name "cathode peaking" is usually ascribed 
to this technique. The analysis proceeds from the circuit of Fig. 5-4. 

1 Removing CK may have one undesirable side effect: the heater-to-cathode leakage 
current may cause a heater-frequency noise to appear across fit and thus in the output. 
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where 

Vs(p) = 

ZL(p) 

~9mVl(p) 

l + gmZk(p) 

1 
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ZL{p) (5-16) 

1 

1/RL + pC 

Let V~i(p) = 1/p; then V2(p) becomes 

Zk(p) = 
l/Rk + pCk 

V2(p) = 
-Or, 

C 

P + l/RkCk 

V RKCK JV^RLCJ 

(5-17) 

It will be convenient to define p = RkCk/RiC and K = 1 + gmRk; then 
v2(t) becomes 

v»(t) = J_ 
~gmRL K 

l 
l + 

P(K - 1) _ 
p - # 

Kt/pRLC _ 

1 -
1 -KtlpRLC _ 

1 - # / p 

# (p ~ 1) _ 
P - K 

K(P - 1) 
P(1 - # / P ) 

<Affz,C 
f or p > K 

(5-18a) 

forp < K 

(5-186) 

We are interested in trying different values of CK for the circuit; the 
other elements are already determined. Thus, we can let p take values 
ranging from zero (cathode resistor unbypassed) to infinity (resistor per­
fectly bypassed). Three special values of p are of interest. 

For P = 0 (Ck = 0) 

For p = oo (Ck = °°) 

v2(t) 

-gmRL 

v2(t) 

= - (1 - e-l'Rt<C) 
K 

-gmRL 
= (1 -tlRLC} 

For p = 1 (/2ACfc = RLC) 

v2(t) 

~gmRL 

= — (1 _ t-KtlRLC) 

(5-19) 

(5-20) 

(5-21) 

The time response for various values of p and for a particular value of K 
(approximately 2) is shown in Fig. 5-5. Notice that p = 1 gives a faster 
rise than does p = 0 and is the largest value of p that gives a monotonic rise 
(no overshoot); hence, this is the value usually chosen in the cathode-peak-
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ing technique. Notice also that p = 100 is a value in the usual range of 
cathode bypassing; there is a fast rise—essentially that of the ideal case 
(p = co)—followed by a long-time sag as previously analyzed for the cathode 
bias circuit. 

It would appear from a comparison of Eqs. (5-20) and (5-21) that 
cathode peaking with p = 1 gives a faster amplifier than does the perfectly 

Fig. 5-5 Step response of the cathode-peaked circuit for different values of cathode 
capacitance. (Drawn for K = 2.) 

bypassed case. Both responses are simple exponentials with a 10 to 90 
per cent rise time already given in Eq. (4-3). 

For p = oo TR = 2.2RLC 

2.2RLC 
For p = 1 TR = —^— 

Thus, so long as K is greater than 1, the rise time is indeed reduced by the 
factor K. Unfortunately, it is not usually sufficient to consider rise time 
alone. The peaking circuits discussed in Chap. 4 were compared on their 
ability to improve the gain-rise-time ratio. On this basis, the cathode-
peaking circuit offers nothing, because the gain is reduced by the same 
factor by which the rise time is reduced, namely, K; hence, the ratio is the 
same as without peaking. 

This perhaps conveys a needlessly unfavorable impression about cathode 
peaking. The reduction in gain can be restored by increasing RL by a 
factor K. Then the gain is the same as in the perfectly bypassed case, the 
rise time is the same, but a much smaller bypass capacitor can be used, and 
there is no sag. 

A similar peaking method may be employed in transistor stages, although 
the value of RE (the emitter resistor), which must be employed to give 
proper peaking, is usually too small to give sufficient bias stability. An 
excellent treatment will be found in an article by G. Bruun.1 

1 Georg Bruun, Common-emitter Transistor Video Amplifiers, PROC. IRE, vol. 44, 
pp. 1561-1572, November, 1956. 
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Fig. 5-6 A sag-compensating circuit. 

5-5 Slope Compensation. This 
is sometimes called "low-frequency" 
compensation, and rightly so, inasmuch 
as the slope or sag in the long-time 
response to a step is governed by 
those circuit elements which govern the 
low-frequency steady-state response. 
However, a steady-state analysis is 
perhaps at its worst when it comes to 
the question of how much compensa­
tion should be used for a good step 
response. 

In transient terms, we have already 
evaluated the long-time step response 
of the conventional circuit and have found that sag results from several 
causes: coupling circuit, screen circuit, and cathode bias (or emitter) 
circuit. Each of these is the source of a negative initial slope, and their 
effects tend to add directly. What we need is a circuit which will provide 

a -positive initial slope, and one which 
will add to the negative slopes in the 
right amount to make the sum equal 
to zero. 

Fortuitously the so-called "decou­
pling circuit," which is a normal part 
of a multistage amplifier—introduced 
to diminish coupling from one stage 
to the others via the common Vbb sup­
ply—is a suitable compensating circuit 

if proportioned properly. It is a long-time-constant circuit, the element 
values can be varied considerably without hampering its decoupling 
effectiveness, and it does provide a positive initial slope. The actual circuit 
is shown in Fig. 5-6 and its equivalent for analysis purposes in Fig. 5-7. 

Fig. 5-7 Equivalent circuit for the 
sag-compensating circuit. 

V2(P) = -gMVx(p) (RL + - 1 ) 
\ 1/RD + pCd) 

RL « RG (5-22) 

Let Vi(p) = 1/p (unit step). 

V(p) = _ 
— QmRL 

1 (p + l/RLCd + l/RdCd\ 
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Using Eq. (5-11), we may immediately find the initial slope, 
1 

Vftz,Cd RdCd/ 
100% 

„'(0+) = (—*— + — L ) — = 

Rl@d 
Rl$d 

(5-24) 

The slope is evidently positive, and hence, by selecting a suitable value 
of Cd for the particular RL being used, it is possible to provide cancellation 
of the negative slope due to one or more of the causes discussed above. 

(a) (b) 
Fig. 5-8 Sag compensation in a transistor amplifier, (a) Actual circuit, (b) Equivalent 
circuit. [NOTE: R„||Ri, £ RaRb/{Ra + Rb)-] 

For instance, to cancel the slope due to the coupling circuit, choose Cd so 
that RLCd = RgCcc (5-25) 

By way of caution it should be pointed out that, although Rd does not 
appear in the initial slope, RdCd must be large compared with the period of 
the waveform to be amplified, in order both that the decoupling function 
be supplied and that the exponential function v2(t) be adequately approx­
imated by the initial straight-line tangent. 

Slope compensation for the transistor video amplifier proceeds from the 
equivalent circuit of Fig. 5-8. In the circuit represents the resistance of 
the biasing network in the base of the transistor. The resistance h\\e is 
the approximate input resistance of the transistor and is equal to 
Tb + i~e/(l — a). The base current is 

Rih -h = 
h 
h 

Ri + hiu 
RL 

R + RL 

P+(RL + Rd)/RLT 
R + RL + Rd (5-26) 

P + 

(R + RL)T 
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where R = Rihlu/(Rx + hUe) and T = RdCd. From Eq. (5-26) the 
initial slope of 7 2 (and hence Ib) may be found by assuming that Ix is a unit 
step of current, 

76(0+) R . M R X 100 
— ~ = — or, in % , % (5-27) 
7,(0+) (72 + ifc)flLC„ (R + RL)RLCd 

The positive sag given in Eq. (5-27) may be used in exactly the same 
manner as Eq. (5-25) to cancel one or more causes of sag in a transistor 
amplifier. It is not practical in the usual case to compensate for many 
causes of sag with one compensating circuit because the approximation of 
the exponential with its initial slope is not good for a long enough time. 
Therefore in a multistage amplifier the sag-compensating circuits are dis­
tributed throughout the amplifier, both to provide the sag reduction and 
to furnish more decoupling than a single decoupling circuit can afford. The 
input stages of the amplifier, in particular, should be provided with decou­
pling since these stages are most prone to signal and noise pickup from the 
common supply leads. 

PROBLEMS 

5-1. In a single stage it is possible to compensate exactly for all time the sag intro­
duced by the cathode circuit alone. Find the value of RD and CD to compensate exactly a 
stage with a cathode circuit comprising RT and CK- Note that BOTH RD and CD must be 
specified for the compensation to be good for all time. 

5-2. For an amplifier whose gain function is described by Eq. (5-3), what can be said 
about the relationship between the sag (expressed as initial slope) and the steady-state 
low-frequency cutoff frequency? Consider three cases: 

A. N = 1 
6. N arbitrary but known 
c. N arbitrary but unknown 
5-3. (This problem utilizes the results of several of the previous chapters as well as 

this one.) An amplifier with a gain of 100 db is required. The amplifier is to be made of 
identical stages (as far as high frequencies are concerned) using 6AK5's. (Assume that 
the load connected to the last stage has the same capacity as the 6AK5 input capacity.) 
The 6AK5 characteristics are 

E, = 6.3 volts 

1/ = 0.175 amp 

= 0.02 pf 

CIN = 4.0 pf 

Cout = 2.8 pf 

Assume a total wiring capacitance of 5 pf which is distributed equally between plate 
and grid circuits. 
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Typical operation: 

= 180 volts 
= 120 volts 

Ed = - 1 . 8 volts 

Ib = 7.7 ma 

hi = 2.4 ma 

= 5,100 jumhos 
rp = 0.5 megohm 

= 20 kilohms 
(Note that the parameters change little with moderate changes in Eb.) 

a. Assuming two-terminal interstage networks with m = 0.25, what is the minimum 
over-all rise time? 

6. How many stages are required to obtain this minimum rise time? 
c. The number of stages found in (b) is excessive; therefore, it is decided to use only 

10 stages to obtain the 100-db gain, but to use the four-terminal networks of Fig. 4-9, 
4-10, or 4-11. With the network which will give the fastest rise time, what is the over-all 
rise time of the amplifier? (Note that capacitance must be added to the interstages to 
preserve the ratio C1/C2 which is required by a given network.) 

d. Assume that one sag-compensating circuit will be used for each pair of stages. Let 
Ck = 200 >if; Cs = 1 Mf; /Sg = 1 megohm; and Crc = 0.1 f̂. Compute the necessary 
values for the sag-compensating circuit. For what length of time will the sag be compen­
sated (make only a rough estimate)? 

c. Carefully draw the complete schematic diagram for two stages of the amplifier, 
including the values of all components. Assume that Vbb = 200 volts. 

5-4. A complete transistor amplifier is shown in Fig. P5-4. The common-collector 
stage at the input provides a high input impedance; the common-collector stage at the 
output provides a low output impedance; and the voltage gain is provided by the 

- l O v 

+ 10v 

Fig. P5-4 

common-emitter stage in the middle. Assume that re = 10 ohms, n, = 1 kilohm, rc = 1 
megohm, and a — 0.99 for all transistors. 

a. What is the over-all voltage gain? 
b. What is the value of d required to give zero initial sag in the output voltage v0(.t)1 
(Be sure to make all reasonable approximations in the representation and calculation 

of the circuit.) 



6 
Additive Amplification 

Conventional amplifier systems, as discussed in the three chapters pre­
ceding this one, could be called "product" amplification. That is to say, 
when several stages are connected in cascade, the over-all gain function (of 
the variable p) is the continued product of the separate stage gain functions, 
as expressed for instance in Eq. (4-43). In contrast, the amplifier structures 
to be described in this chapter have a gain function which is the sum of the 
"gains" provided by the separate elements. 

Product, or cascade, amplification is older and more widely used. If the 
requirements on rise time (or bandwidth, in the steady state) are not too 
severe, a given amount of gain can be provided with fewer tubes in the 
cascade connection. But when the requirements are severe, it may be 
impossible to meet them with the product system, and yet the same tubes 
may be used in an additive structure to meet the requirements. The 
criterion that determines whether or not the cascade structure will work 
is the familiar quotient of gain over rise time, a factor which depends 
primarily on the tube (Table 4-1) but which may be improved by more 
complicated circuits, e.g., Figs. 4-9ff. 

The difficulty becomes apparent when one is faced with providing a 
certain over-all gain for n stages (n unknown) and a certain over-all rise 
time TRN. There are various tube types available, each with a particular 
gm/C, and one has at his disposal certain networks, each having an efficiency 
factor r), expressing the relative speed with respect to the elementary re­
sistance-coupled circuit. These are the "building blocks." Unfortunately, 
there is a limit to what can be done. As given in Eq. (4-54), the analysis 
by Elmore has shown that there is a minimum rise time that can be achieved 
with a given over-all gain which occurs when the stage gain is yf\. If the 
requirements call for a smaller rise time than Eq. (4-54) permits, the job 
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cannot be done with cascade amplification unless better tubes or networks 
are developed (the networks cannot be expected to provide an efficiency 
much better than 4, and they become inconveniently complicated at values 
of 2). 

Additive amplification is the solution. In fact, it works even when each 
tube contributes a "gain" of less than unity! There are two principal types 
of additive structures. One of these is called the "distributed" amplifier; 
it was first employed in a British television installation in 1937, and has 
been in extensive commercial use in the United States since 1948. The 
other is the "split-band" amplifier and is still under development. 

6-1 Basic Theory of Distributed Amplification. This form of 
amplifier structure was first proposed by Percival in 1935 in a British 
patent,1 although the system did not go into active use until after the first 
published analysis 2 in 1948. 

The basic idea of the distributed amplifier is surprisingly simple, although 
there are, of course, many practical matters that contribute to the difference 
between actual performance and the first-order theory. The elementary 
form of the structure is given in Fig. 6-1. The networks LxCi comprise the 
so-called grid "line," a cascade of filter sections in which the capacitors 
Ci are the input capacitance of the tubes. Similarly, the networks L 2 C 2 

are the plate line,3 C 2 being the output capacitance of the tubes. The two 
lines are designed to have the same phase velocity and are terminated in 
their characteristic resistances i? 0i a n d R02, respectively, so that no reflec­
tions take place. The lines are further assumed to be dissipationless, so 
that a wave can travel along either of them without attenuation. 

Within the limits of these idealized conditions, the following relationships 
hold: 

Characteristic impedance 

1 W . C. Percival, Thermionic Valve Circuits, British Patent 460562, July 24, 1935-
Jan. 25, 1937. 

1 E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, Distributed Amplifica­
tion, Proc. IRE, vol. 36, pp. 956-969, August, 1948. 

3 The conventional filter formulas are open to question where the plate line is con­
cerned, since the structure is driven by a number of current generators along the 
structure instead of by a single generator at one end. This situation is analyzed by D. V. 
Payne, Distributed Amplifier Theory, Proc. IRE, vol. 41, pp. 759-762, June, 1953; 
discussion by R. W. A. Scarr, Proc. IRE, vol. 42, pp. 596-598, March, 1954. 

(6-1) 



SEC. 1] BASIC THEORY OF DISTRIBUTED AMPLIFICATION 149 

Phase velocity (sections per second) 
1 1 

"•"vwrvm * <6-2) 

Plate current of each tube = gm | Vi | (6-3) 
Because of the equal velocities in grid and plate lines the plate-current 
contributions of successive tubes will add directly; i.e., they are all in phase 
at the load. 

ngmV~i 
Load current = (6-4) 

2 

The factor 2 in Eq. (6-4) comes in because half the current contributed by 
each tube flows to the left in the plate line and is lost in the terminating 
resistor i202- I Q spite of the current thus lost, the resistor R02 is usually 
necessary to prevent reflection of the wave traveling to the left of each 
plate, which at certain frequencies could cancel the wave traveling to the 
load. 

nqMVI U 
Output voltage V2 = R02 ~V (6-5) 

2 

Amplification A = — = — - — (6-6) 

Equation (6-6) displays the basic property of the distributed amplifier, 
namely, that the amplification increases linearly with the number of 
"stages"; i.e., each tube contributes a gain of gmRo2/2, and the total gain is 
the sum of the individual contributions. Indeed, each tube may contribute 
a gain of less than unity, and yet the total gain can be made as large as 
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desired by adding a sufficient number of tubes. This situation is not pos­
sible with cascade amplification. 

6-2. Cascading Distributed Amplifier Stages. It is feasible—and 
frequently advantageous—to cascade whole distributed stages of the type 
of Fig. 6-1. This is done by connecting the grid line of the second stage as 
the load on the first stage (with a blocking capacitor for d-c isolation, of 
course). Should E 0i and R02 not be the same, a transformer is in principle 
required to join the two stages in order to prevent reflection. If very low 
frequencies as well as the high frequencies must be amplified, a suitable 
transformer cannot be obtained; if, however, only the band from a few 
megacycles to the upper limit of the amplifier is required, a suitable coaxial 
transformer may be constructed. In the former case, it is usual to make 
Roi and R02 the same by adding to the smaller of Ci or C2 in order to equal­
ize them. The effect is the same, but the gain is reduced by the added 
capacitance. With the transformer, Eq. (6-6) becomes 

A = (6-7) 
2 

If, instead of a transformer, capacitance is added to the smaller C, 

Roi 
A = ngm if R02 is made equal to Koi (6-7a) 

2 
The question to be asked about cascading is: When does one stop adding 
tubes along the line in one stage and add further tubes in a second stage? 
This is readily answered for the idealized conditions we have thus far con­
sidered, i.e., that the grid and plate networks behave perfectly as lines. 
Supposing that a total gain At is required, how few tubes, N, are necessary 
in m stages, with n tubes per distributed stage? Let the contribution of 
each tube to the stage gain A in Eq. (6-7) be A{, where 

Ai = ~ VR0,R02 (6-8) 

Thus A = nAi (6-9) 

At = (nA{)m = Am (6-10) 

N = nm (6-11) 
From Eqs. (6-10) and (6-11) 

n In At = N In (nAi) (6-12) 
Differentiate Eq. (6-12) with respect to n, 

dN N 
In At = — In (nAi) + — (6-13) 

dn n 
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For a minirnum in N, the total number of tubes, set dN/dn = 0. Then 

N 
In At = - (6-14) 

n 

At = e
N ' n = em = Am (6-15) 

Thus A = e ( = 8.7 db) to give the most efficient use of the tubes (i.e., 
minimum N).1 Of course, we have learned that cascading stages impairs 
rise time and reduces bandwidth, but this consideration has been neglected 
here. (See Sec. 6-5.) 

6 - 3 . Plate and Grid Line Characteristics. Before undertaking an 
analysis which includes the effect of bandwidth shrinkage, we must study 
the plate and grid lines to determine what effects these will have. The basic 
premise in the elementary theory of the distributed amplifier is that these 
networks simulate smooth lines, terminated in the appropriate R0 so that 
no reflections occur. Apart from the termination problem, the important 
requirement is that the velocity (or time delay) per section of the grid net­
work equal that of the plate network and also that this velocity be constant 
with frequency. This is the same as saying that the phase shift must be 
proportional to frequency. Failure to realize this results in phase distortion, 
which, as was considered in Chap. 4, shows up also in distortion of transient 
signals. Naturally, it is true that the amplitude distortion (as a function of 
frequency) also enters into the transient distortion. The elementary ladder 
networks such as those of Fig. 6-1 have a disproportionate amount of phase 
distortion, and hence an all-out effort to decrease this results in a better 
balance between amplitude and phase distortion and a better transient 
response. 

The problem of designing the best possible network for use in the dis­
tributed amplifier has its counterpart in the design of the best possible 
delay line from lumped dissipationless elements. These delay lines are used 
in oscilloscopes, radar, etc., and provide small time delays with as little 
distortion as possible, i.e., distortion of rectangular pulses or other transient 
waveforms. Interestingly enough, the network most widely used in delay 
lines is the same as that in the typical distributed amplifier.2 Actually, the 
distributed amplifier presents a somewhat more difficult network problem, 

1 This relationship is given by Ginzton et al., op. cit., and by A. P. Copson, A Distrib­
uted Power Amplifier, Elec. Eng., vol. 69, pp. 893-898, October, 1950. 

2 References on the delay line include H. E. Kallman, Equalized Delay Lines, Proc. 
IRE, vol. 34, p. 646, September, 1946; B. Chance et al. (eds.), "Waveforms" (vol. 19, 
M.I.T. Radiation Laboratory Series), pp. 730-750, McGraw-Hill Book Company, Inc., 
New York, 1948; J. F. Blackburn (ed.), "Components Handbook" (vol. 17, M.I.T. 
Radiation Laboratory Series), pp. 191-217, McGraw-Hill Book Company, Inc., New 
York, 1949; B. Trevor, Jr., Artificial Delay-line Design, Electronics, vol. 18, p. 135, June, 
1945. 
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because the input conductance of the tubes connected to the grid line 
introduces dissipative elements in shunt with the capacitances; this will be 
discussed later. 

Consider now the basic circuit of Fig. 6-1. The grid and plate networks 
have the appearance of transmission lines, in which the infinitesimal ele­
ments of series inductance and shunt capacitance in the continuous line 
have become finite. It is, indeed, an "artificial line," and the properties 
of such lines (in the steady state) have been known since the early days of 
the telephone. Moreover, the whole art of the "wave filter" was first 
devised by G. A. Campbell from the concept of the artificial line, and we 

1' 

LI 2 LI 2 

2* 
Fig. 6-2 T section. Fig. 6-3 Pi section. 

can profitably use the results of much wave-filter analysis in the problem 
here. 

The artificial line fails us because it has one characteristic not possessed 
by the smooth line, namely, a cutoff frequency fc, where 

(6-16) 

The significance of the cutoff frequency for the network structure in Fig. 
6-1 (which is shown again in both its T and pi equivalents, in Figs. 6-2 and 
6-3, respectively) is that a chain or ladder of sections of this type will 
transmit frequencies below—but not above—this frequency. Moreover, 
there is an abrupt discontinuity in the phase velocity and the characteristic 
impedance 1 at the cutoff frequency, and indeed these parameters begin to 
vary significantly with frequency long before the cutoff is approached. 
Equations (6-1) and (6-2) for the characteristic impedance and velocity 
are those which would be appropriate for a smooth line, if L and C repre­
sented the values per unit length; they also hold for the lumped network 
at very low frequencies (far from cutoff). The general expressions for the 

1 In filter analysis this is called the image impedance, which in the case of the input 
impedance to an infinite ladder of sections is also the characteristic impedance. The 
latter is defined in terms of reflections, whereas the former is defined as the input 
impedance to a section when terminated at the output by an impedance equal to the 
impedance looking back into the output terminals, i.e., the "image," to use a mirror 
analogy. 
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impedance and delay T per section (defined as l/vp) at any frequency in the 
region below cutoff are 

IL 1 

Zl'* = *' c Vi - if/ff f o r t h e p i s e c t i o n ( 

c 
ZIiT = J^Jl - (^j for the T section (6-17a) 

V T = , == (6-18) 

^ V Vl - (f/fc)2 

A plot of T and Zr is given in Fig. 6-4. It can be seen from the figure that 
there are two problems which were not considered in the ideal-line case. 
One is the termination problem, and the other the time-delay, or velocity, 
problem. It is important that the grid and plate networks be terminated 
so that there are no reflections; otherwise, as the frequency is varied, the 
reflected wave could alternately add to and subtract from the forward 
wave, thus producing variations in the amplifier gain as a function of fre­
quency. From Fig. 6-4 it is apparent that the terminating impedance must 
vary with frequency in the manner indicated there, instead of being a simple 
resistor as depicted in Fig. 6-1. 

The other problem, time delay, is serious from the standpoint of the 
transient response. The curve of Fig. 6-4 displays phase distortion; i.e., 
the time delay is not constant as would be the case with phase proportional 
to frequency. The discussion in Chap. 4 brought out the undesirable 
transient performance resulting from phase distortion. 

Both of the problems which have been described above, termination and 
time delay, can be solved sufficiently well for practical purposes, although 

0 f/fc 1 0 f/fe 1 

Fig. 6-4 Image impedance and time delay for sections shown in Figs. 6-2 and 6-3 
(constant-A; sections). 
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the solutions are by no means the ultimate. Consider first the termination 
problem. The proper terminating impedance, with an approximation to 
the characteristic as in Fig. 6-4, can be provided by what the filter experts 
call an "m-derived half section." A few words might be in order concerning 
the background of terminology, as well as the device itself. 

The network sections of Figs. 6-2 and 6-3 are "lowpass" forms of general 
filter sections shown in Figs. 6-5 and 6-6. Proper choice of the elements 

ZJ2 Zjz 

2Z, 2Z, 

Fig. 6-5 Constant-fc prototype T section. Fig. 6-6 Constant-fc prototype pi section. 

making up Z\ and Z2 permits not only lowpass structures but also highpass, 
bandpass, and band-elimination filters. One basic type of all these is the 
so-called "constant-fc" structure, in which, independent of frequency, the 
following relationship holds: 

k2 — Z1Z2 k a real number 

The image impedance of the constant-fc section is 

(6-19) 

ZI.T = . ZiZ2 + 
Z 1 2 

Zi,. 
Z\Z2 

VZiZa + Zx
2/± 

Fig. 6-5 

Fig. 6-6 

(6-20) 

(6-21) 

The m-derived section evolves from the constant-fc one in the following 
manner: If a network section is assembled as in Fig. 6-7, in which Z\ and Z2 

are the same as in the constant-fc (sometimes called "prototype") section of 
Fig. 6-5, such a section is said to be m-derived. The coefficient m can be 

mZj/2 mZ1/2 mZj/2 mZ1/2 

1 - m 2 

Am Zi 

T 

mL/2 mL/2 

Fig. 6-7 m-derived section. Fig. 6-8 m-derived lowpass section. 
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Hence, such a section could be inserted in a ladder of prototype sections 
without producing reflections at any frequency. There are positive advan­
tages to the m-derived section, beyond this permissive attribute of being 
able to use the section in combination with the basic constant-A; structure. 
The first advantage comes in connection with the termination problem. 
Suppose that we split the m-derived section of Fig. 6-8 into two half sections 
as in Fig. 6-9 and then examine the image impedance looking into the 
terminals a-a'; this is called the mid-shunt impedance Z'Ijr. 

The impedance may be found by substituting Z\ and Z'2 into Eq. (6-21) 
for ZiiW, 

_ II 1 - (1 - m2) jf/U)2 

Zl--4~C V i -U/Q- (6"24) 

For various values of m, Z'I:T varies with frequency, as indicated in Fig. 
6-10. This is quite remarkable, because for all values of m the image 
impedance of the main section (terminals 6-6') remains as in Fig. 6-4. The 

any real constant, not necessarily an integer. The m-derived counterpart 
of Fig. 6-2 is shown in Fig. 6-8. 

If the total shunt impedance is defined as Z2 and the total series imped­
ance is defined as Z\, that is, 

Zi = mZi (6-22) 

. Z2 1 - m 2 

and Z'2~~ + ~ Z, (6-23) 
m 4m 

then substitution into Eq. (6-20) for Z / , T gives the new image impedance, 
which turns out to be exactly the same as that for the constant-A; section. 
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:0.3C 

'0.53L 
0.5L 

-^nnr v-o- jTrinrL 

0.3L b 

Fig. 6-11 Distributed amplifier showing the terminating half section. 

ladder is then terminated. In Fig. 6-11 this is done for the plate network 
of the distributed amplifier. 

Our first problem is thus solved, with the aid of the "terminating half 
section." Four of these terminations are usually required, one at each end 
of both grid and plate networks. 

The next problem, that of the frequency-variable time delay, is also 
solved with the employment of an m-derived structure. If one explores 
the time delay per section for various values of m, curves such as those of 
Fig. 6-12 are obtained. Notice that m = 1.27 has a particularly favorable 

characteristic, in that the delay time 
remains approximately constant to a 

| I \ high frequency; this is the value usually 
chosen for delay lines and distributed 
amplifiers. Remember that choosing 
any particular value of m, such as 1.27, 
has no effect on the image (character­
istic) impedance ZJX, SO all that has 
been said about terminations, etc., is 
unaffected by whether we use constant-fc 
or m-derived sections associated with 
each tube in our amplifier. 

Fig. 6-12 Time delay in m-derived T h e r e i s o n e slightly embarrassing 
section. feature in choosing a value of m 

1.0 - r 

///. 1 

Time delay in m-derived 

value m = 0.6 is particularly useful. Notice that Z'J^/y/L/C is real and 
very close to 1.0 up to a frequency nearly equal to fc. Our terminating 
technique is now in hand. We connect a resistance R = y/L/C to the 
terminals a-a'; this matches the image impedance Z'Ijir (within the limits of 
the approximation of the m = 0.6 curve), and hence looking to the left at 
b-b' the impedance Zj is the same as though there were an infinite number 
of either m-derived or constant-fc sections extending to the right, which 
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greater than unity: a negative inductance is required in the shunt branch 
(see Fig. 6-8). Such a requirement can be met, however, by providing 
mutual inductance of the proper amount between the two series elements. 
Thus, in Fig. 6-8 we interpret the three inductances to represent the T 
equivalent of a transformer and then replace the equivalent by an actual 
transformer. It is possible for the actual transformer to be physically 

Fig. 6-13 Section using mutual induct- Fig. 6-14 Physical form of Fig. 6-13. 
ance to realize m > 1. 

realizable, even though the T equivalent is not. Thus, the circuit of Fig. 
6-8 becomes that of Fig. 6-13. In practice the transformer is constructed 
by tapping onto a single-layer coil of suitable proportions,1 as indicated in 
Fig. 6-14. 

Thus, each section of the distributed amplifier is arranged as in Fig. 
6-14, where the capacitance is either the input capacitance or the output 

m=0.6 
= 1.27 4 i m = 1.27 ^ 

'Trai "OTP—nnp-

Fig. 6-15 Complete plate-line network showing both phase and impedance equalizing 
sections. 

capacitance of the tube. The complete form of the plate network, for 
instance, would then be as in Fig. 6-15. This, then, is the basic design 
philosophy of the distributed amplifier, as currently being used. The 
steady-state response is quite acceptable to very high frequencies, in spite 
of the fact that the approximation involved in the terminating half sections 

'See Kallman, op. cit.; also see B. Murphy, Distributed Amplifiers, Wireless Engr., 
vol. 30, pp. 39-47, February, 1953. 
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gets worse as the cutoff frequency is approached. From the standpoint of 
transient response, the approximation does not seem to work out as well, 
and in practice there is a certain amount of cut-and-try manipulation of the 
termination on an experimental basis, while the operator observes the shape 
of the transient response. 

Other forms of networks have been employed, such as the bridged T, 
but the arrangement of Fig. 6-15 is the most widely used. It is possible, 
for instance, to use a continuous solenoid for the plate or grid line, with 
taps along its length for the tube connections.1 

6-4 Effect of Tube Input Conductance. In a practical case, where 
the amplifier is to operate at frequencies of 100 or 200 Mc, the analysis 
should be extended to include the effects of the input admittance of the 
pentode tubes. This input admittance has both a capacitive and a conduc­
tive component (see Fig. 2-156). The latter component is the more serious 
in the distributed amplifier, because it produces attenuation of the signal 
traveling down the grid network. The conductance of the tubes increases 
with the square of frequency, and so as the frequency is increased, the 
attenuation ultimately reaches a level such that the attenuation per section 
is greater than the gain provided by the tube; beyond this frequency the 
gain diminishes—and adding more tubes only makes matters worse. The 
negative input conductance due to inductance in the screen lead may be 
used to decrease the total input conductance, but care must be used to 
prevent regeneration. 

The attenuation due to input conductance has been analyzed in the 
literature.2 One important conclusion is that, since the magnitude of the 
input conductance is proportional to the cathode lead inductance and 
cathode-grid transit time of the tube, the choice of tube must involve these 
factors as well as the usual ratio of gm to capacitance. 

6-5 Cascade vs. Distributed Amplification. We may now re­
turn to the problem of the optimum method of cascading distributed 
amplifier stages, this time taking into account the bandwidth shrinkage 
neglected in the preceding analysis. An interesting case to consider would 
be to regard the over-all gain and bandwidth as the fixed parameters and 
to solve for the arrangement of the amplifier giving the fewest number of 
tubes. We shall make one assumption to proceed with the analysis, 

, _ fc<i 
~ - » / — 

V m 
1 H . G. Rudenberg and F. Kennedy, 200-Mc Traveling-wave Chain Amplifier, 

Electronics, vol. 22, pp. 106-109, December, 1949. 
2 W. H. Horton, J. E. Jasberg, and J. D. Noe, Distributed Amplifiers, Practical 

Considerations and Experimental Results, Proc. IRE, vol. 38, pp. 748-753, July, 1950. 
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This equation is analogous to the equation giving the combination of rise 
times [Eq. (4-37)]; i.e., here the over-all bandwidth fCit of the amplifier is 
proportional to the individual stage bandwidth and inversely propor­
tional to the square root of the number of distributed stages, m. This is a 
reasonable assumption if the individual stages are adjusted to give a good 
transient response such as an amplitude response resembling a gaussian 
curve. 

The characteristic resistance of the lines may be expressed in terms of the 
stage cutoff frequency 

1 
fci = — 7 = (6-16) 

Ro = — ; (6-25) 
Weils 

Equation (6-6) for the distributed stage gain may then be written in terms 
of the cutoff frequency, 

ngmR0 gm 1 nf0 

A - = n = — (6-26) 
2 2TC fc,i / c , i 

A Qfn , 
fo = 2Tc (6-27) 

The quantity / 0 is a figure of merit for the vacuum tube similar to the 
gain/rise-time quotient discussed in Chap. 4. Observing that again the 
total number of tubes N = rim, and substituting s/mfct for /„,,-, we can 
write for the over-all gain 

A t = \^%) ( 6 " 2 8 ) 

Differentiating Eq. (6-28) to find dN/dm and setting it equal to zero gives 
the proper stage gain, A, to result in the minimum number of tubes, N. 

A = (approx. 13 db) (6-29) 

Unlike the cascaded-amplifier example, this particular value of A does 
not give the maximum over-all bandwidth, but only the most efficient use 
of the tubes to give the prescribed bandwidth and gain. 

A further question which might well be asked is: When does one change 
from using cascade amplification in favor of distributed amplification? The 
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Fig. 6-16 Gain-bandwidth diagram for cascaded and distributed amplifiers. 

situation for the two kinds of amplification is depicted in Fig. 6-16.1 Here 
the actual gain of the amplifier is plotted as a function of normalized band­
width. For a single-stage RC amplifier the gain is unity (0 db) for a band-

1 The equations for the lines in the graph of Fig. 6-16 may be obtained by assuming 
that the over-all bandwidth fc,t of a cascaded RC amplifier is related to the stage band­
width fc<i by fc,t = / c , » / A / w . The gain-bandwidth product of the tube is /o = gM/2TRC 
[Eq. (3-89)]. Then the gain of N stages becomes 

A = / g m Y = - ( / o Y 
" Wc^nfJ \VnfcJ 

and 20 log AN -20wlog 
/ o 

This is the equation for the left-hand lines in Fig. 6-16. 
For the distributed amplifier the gain is given by Eq. (6-28), with N=NM substituted, 

= ( i° y (6-28a) 

20 log A = - 2 0 m log 
Vmfc. 

NFO 

This is the equation for the gain of the distributed amplifier. Note the difference in the 
definitions for C in the equation for /o for the two kinds of amplifier. Also note that 
the graph serves only as a guide because the usable bandwidth of a distributed amplifier 
is not as great as /„, the filter cutoff frequency. 

file:///VnfcJ
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Fig. 6-17 Split-band amplifier. 

of multiplying the abscissa by the ratio of the bandwidth of the network 
to the bandwidth of an RC stage having the same gain. (This ratio is 
similar to 77 defined in Chap. 4.) An improvement ratio greater than 3 is 
unlikely with practical networks. Even with such a complicated network, 
40 db of gain could be obtained with only about 0.6/0 bandwidth. 

The solid curves represent the situation for distributed amplifiers: here 
the gain (without cascading) is proportional to the number of tubes and is 
inversely proportional to frequency. Note that gain is obtained in the 
region which is excluded for cascaded amplifiers. On the assumption that 
the same laws of bandwidth reduction as used previously apply to cascaded 
distributed amplifiers, lines giving the gain may be drawn for more com­
plicated combinations. Two such lines are shown, each for three stages, 
but one for 4 tubes per stage and one for 10 tubes per stage. The bandwidth 
for a 12-tube amplifier at which the distributed-amplifier approach gives 
less than a cascaded amplifier is 0.14/0. Note, however, that each distrib­
uted stage is giving = 24.7 db gain, which is more than the optimum 
for a minimum number of tubes—hence an example with a smaller number 
of tubes per stage would give better results. 

The decision to select the distributed amplifier is easy when the gain and 
bandwidth required fall outside those obtainable with cascaded amplifiers, 
but the choice becomes a matter of economics if either type of amplifier 
would suffice. One additional consideration may enter into the final 
selection. In the case of an output stage which must develop a considerable 

width equal to the gain-bandwidth product of the tube. The gain varies 
inversely with bandwidth as shown for the line marked "1 tube," which 
could be regarded as the simplest cascaded or distributed amplifier. In the 
cascaded amplifier increasing the number of stages changes the slope of the 
line (A » l / / c " ) but moves the intercept of the line to the left since the 
bandwidth decreases as the number of stages is increased (unity-gain inter­
cept = l / V n ) . Note that the dashed lines which indicate the gain for an 
n-stage nondistributed amplifier define a forbidden region to the right of all 
the lines which it is impossible to enter with a cascaded amplifier. For 
example, with RC stages a gain of 40 db with a bandwidth of 0.25/o cannot 
be obtained. The use of more complicated interstages simply has the effect 
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output-voltage swing, the distributed amplifier is advantageous because 
the total plate-current swing which develops the output voltage is n/2 
times the plate-current swing of one tube. This property has been utilized 
to realize wideband power amplifiers where each tube in the distributed 
chain may be a vhf power tetrode. 

6-6 DISTRIBUTED AMPLIFIERS USING TRANSISTORS. Obtaining a dis­
tributed amplifier with transistors for active elements is a considerably 
more difficult task because of two principal problems: (1) the input admit­
tance of the transistor has a considerable conductance component, which 
loads the input line, and (2) the device is not unilateral, and feedback 
effects result which are difficult to account for. At least one such successful 
amplifier has been constructed and gives reasonable performance.1 The 
need for such amplifiers is somewhat open to question with the advent 
of transistors with extremely large gain-bandwidth products. Transistors 
with gain-bandwidth products of 5,000 Mc have been constructed which 
enable amplifier bandwidths of 1,000 Mc or more to be obtained. At such 
a bandwidth lumped-constant circuits are no longer practical; consequently 
a further increase in bandwidth cannot be obtained by the distributed-
amplifier techniques unless some way of utilizing coaxial circuits can be 
found. 

6-7 SPLIT-BAND AMPLIFIER. The split-band amplifier, sometimes 
called the parallel-chain amplifier or divided-band amplifier, has been pro­
posed at various times and is the subject of a limited amount of recent 
research.2 The basic structure consists of two (or more) amplifiers in 
parallel, each providing gain over a portion of the entire passband needed, 
as depicted in Fig. 6-17. The individual amplifiers may be either cascade 
or distributed. Although the ultimate performance of this split-band 
structure holds great promise, there is difficulty in designing the branching 
networks Ni and N2 and the characteristics of each amplifier so that the 
entire assembly has the desired frequency response, particularly in the 
critical "crossover" region. 

1 P. H. Rogers and L. H. Enloe, "Transistor Distributed Amplifier," U.S. Signal Corps 
Contract DA-36-039 SC-75021, Final Report, Mar. 15, 1958-Feb. 1, 1959, Applied Re­
search Laboratory, University of Arizona, Tucson, Arizona. 

2 J. C. Linvill, Amplifiers with Prescribed Frequency Characteristics and Arbitrary 
Bandwidth, M.I.T. Research Lab. Electronics Tech. Rept. 163, July 7, 1950; H. A. 
Wheeler, "Maximum Speed of Amplification in a Wideband Amplifier," Wheeler Mono­
graph 11, Wheeler Labs., Inc., Great Neck, N.Y., July, 1949. 
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P R O B L E M S 

6-1. A single-stage distributed amplifier is required to deliver a 100-volt peak-to-peak 
signal (square wave) and have a cutoff frequency of 50 Mc. The tubes to be used are 
6CB6's with gm = 6,200 ^mhos, Cm = 9 pf, Cout = 5 pf (these capacitances include an 
allowance for stray wiring capacity); the maximum plate current permitted (per tube) 
is 25 ma. The networks to be used are m-derived sections designed for constant time 
delay; that is, m = 1.27. In this application there is no necessity to make the grid- and 
plate-line impedances equal; hence no additional padding capacity is needed. 

a. How many tubes must be used to obtain the desired output voltage? 
b. What is the gain of the stage? 
c. What is the characteristic impedance of the grid line? 
d. Draw a terminating half section (m = 0.6) for the plate line, and show element 

values. 
6-2. A 5654 pentode has the characteristics given below. 
Find the arrangement of tubes in a cascaded, distributed amplifier that will produce 

50 db of voltage gain with 100 Mc bandwidth, and use the minimum total number of 
tubes. Assume that the bandwidth of cascaded stages decreases as 1 /\/m. Sketch the 
arrangement of a single stage including all necessary biasing and coupling impedances, 
as well as the signal-element values. Only one supply voltage is to be used, but you may 
specify its value. 

Calculate the values which affect the low-frequency behavior so that the over-all sag 
is 0.1 per cent/Vsec and each source of sag contributes equally. 

C i n — 4.0 pf h = 7.5 ma 

C o u t = 2.85 pf let = 2.5 ma 

Assume a wiring capacity of 2 pf at grid and plate. 

Eb = 120 volts rp — 0.34 megohm 

EC2 = 120 volts rpi = 20 kilohms 

Ed - —2 volts = 1.65 watts max 

= 5,000 Mmhos wct = 0.55 watt max 

(Note that variations of ± 2 0 per cent in Eb make little difference in the tube charac­
teristics.) 



Introduction to the Filter Amplifier 

The previous discussion has centered around the transient response of 
amplifiers. The only function of the amplifier was to provide gain with as 
little distortion of the waveform as possible. Suitable test waveforms were 
the step and square wave, and hence there was developed a technique of 
evaluating amplifier performance in terms of the response to such wave­
forms. The steady-state response of the amplifier was purely incidental. 

In amplifying portions of many systems, however, there is an additional 
requirement. Not only is an amplifying unit expected to produce gain over 
a bandwidth sufficient for the information contained in the signal, but it 
must also reject signals outside the appointed band. This is primarily a 
steady-state matter; i.e., we are talking in terms of the frequency response 
of the system. It may of course be true that the desired signal which is to 
be amplified consists primarily of transient waveforms and that the tran­
sient response must therefore not be entirely ignored. Nonetheless, we 
shall seek to allow for this through use of the interrelationships developed 
in the preceding chapters between steady-state and transient response. 

Our principal concern will be with bandpass amplifiers, rather than with 
lowpass or highpass. In one sense we considered the lowpass amplifier in 
the preceding chapters, but there were no requirements that the amplifier 
reject frequencies above any prescribed frequency limit. Bandpass ampli­
fiers are fundamental to all types of systems using the radio-frequency 
spectrum on a frequency-separation basis (as opposed to time separation, 
e.g., multichannel pulse-time modulation), including radio, radar, and car­
rier on wire lines. 

There are several aspects of the design requirements, and their relative 
importance will vary from one application to another. These are the 
center frequency /o, the bandwidth B, and the gain magnitude A0 at band 
center. It shall be the objective here to present techniques which make 

164 
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possible the achievement of really difficult combinations of requirements, 
viz., high gain and large bandwidth all in one amplifier, together with good 
rejection of signals outside the passband. 

The bandpass amplifier can, of course, use either vacuum tubes or tran­
sistors for active elements; however, the present state of the art of designing 
transistor bandpass amplifiers is considerably the more rudimentary. 
Therefore the discussion will center about vacuum-tube examples. The 
general principles which will be explored are applicable to either transistor 
or vacuum-tube cases; consequently the discussion should be quite valuable 
even to one primarily interested in the transistor amplifier. 

K K 

Fig. 7-1 Equivalent circuit for pentode at medium to high frequencies. 

The equivalent circuit which is valid for the usual frequency ranges of 
pentode operation is that of Fig. 2-15, which is repeated here as Fig. 7-1. 
The tube capacitances Cm and C o ut plus the associated wiring capacitances 
Cw usually comprise the total interstage capacitance in a wideband amplifier 
because any additional capacitance, such as a tuning capacitor, reduces 
the gain which can be obtained for a given bandwidth. The grid-plate 
capacitance Csp is usually small enough in a modern pentode to be neglected 
as a feedback element because of the relatively low stage gain in a wideband 
amplifier. If the source and load impedances for the stage are high, how­
ever (which implies a narrow-band situation), the feedback due to the grid-
to-plate capacitance may be sufficient to alter radically the gain character­
istic, or even to cause oscillation. If Cgp is neglected, the current generator 
gmVe is the only coupling between input and output; hence the equivalent 
circuit becomes a linear unilateral network. The input conductance, which 
was given by the empirical equation (2-36), varies predominantly with the 
square of frequency with a modern tube; however, gt is usually regarded as 
a constant across the passband of interest [that is, <7* = f7;(/o), where / 0 is 
the band-center frequency]. The circuit damping conductances, which are 
added to broaden the interstage, are in parallel with gt and tend to mask the 
variation of with frequency. 

Our basic problem consists in assembling useful combinations of tubes 
(or transistors) and interstage networks, usually in the cascade (or "tan­
dem," or "chain") arrangement, in such a way and with such components 



166 INTRODUCTION TO THE FILTER AMPLIFIER [CHAP. 7 

as to provide a desired gain and amplitude response. (NOTE: Amplitude 
response will be the abbreviated way of saying "amplitude response vs. 
frequency," or "gain magnitude vs. frequency.") 

The problem is similar to that of designing a filter consisting of passive 
network elements only. Indeed the properties of the over-all transfer 
function of an amplifier have many points in common with that of the pas­
sive filter. It might be said in this regard that we are dealing with applied 
network theory. Our task is more difficult in two respects: (1) the amplifier 
must provide gain, and (2) we are restricted to interstage networks that 
will function properly in combination with the irreducible equivalent net­
work of the active device (e.g., Fig. 7-1). As a consolation, however, it 

K-i Kx Kz 
Fig. 7-2 Single-tuned interstage showing all pertinent elements. 

will turn out that the unilateral property of the tubes serves to "isolate" 
the interstage networks, and certain advantages are gained, both in the 
design and in the adjustment of the amplifier, as contrasted with the 
completely passive structure. One of the major problems with the tran­
sistor case is caused by the nonunilateral nature of the device, which 
introduces interaction from one stage to the next. 

Since the interstage networks can be only those which "fit in" with the 
tube or transistor, it might well be expected that only certain classes of 
interstages have been found to have practical value. This is indeed the 
case, and the synthesis of the filter is largely a matter of selection, as to both 
active element and network, based upon suitable figures of merit for compar­
ing their value. Therefore we shall commence the study by an examination 
of several types of interstage network, beginning with the simplest. 

We shall not proceed far in the direction of network complexity, although 
the frequency response of a multistage amplifier may be identical in its 
characteristics to that of a complicated filter. Where many stages are 
needed to supply gain, it is good strategy to distribute nonidentical, simple, 
filter-type networks between the stages, each designed in such a way as to 
yield in the combination the desired over-all response. This comprises the 
so-called "filter amplifier," a term introduced by Butterworth.1 When only 

1 S. Butterworth, On the Theory of Filter Amplifier, Exptl. Wireless and Wireless 
Engr., vol. 7, p. 536, October, 1930. 
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a few stages may be needed to provide the required gain and yet the desired 
frequency response is that of a filter with many sections, it is possible to 
employ networks of greater complexity than those commonly used with 
filter amplifiers. Such networks differ from the usual passive filters in that 
they must provide for capacitance at input and output terminals and also 
for finite Q of the inductors.1 Adjustment of such networks calls for special 
techniques.2 

7-1 Propert ies o f a S i n g l e P e n t o d e S t a g e w i t h a S i n g l e - t u n e d 
I n t e r s t a g e . As a starting point, suppose that our gain requirements are 
so modest as to permit the use of one stage alone. Or even if they are not, 
the single stage is the fundamental 
"building block" in the multistage j 

networks. 
An alternative approach might be to study the general properties of two-

terminal interstage networks, as the simplest class of networks, and without 
regard to particular configurations. This is more properly in the province 
of a course in network theory,8 and time does not permit the full develop­
ment of these matters here. We shall find it of considerable value, however, 
to draw upon the results of such development. 

As a practical matter, the only form of two-terminal interstage in exten­
sive use today is the single-tuned network. Starting with the basic equiv­
alent network for the tube (Fig. 7-1), the single-tuned interstage is con­
structed by adding a shunt inductance L, tuned to resonance at the desired 
center frequency with the total interstage capacitance Cm + C o u t + Cw, 
and a resistance R as illustrated in Fig. 7-2. With most pentodes rp and gt 
may be ignored in comparison with R, in which case the circuit reduces to 
that of Fig. 7-3. In any event, R can represent the parallel combination 
which includes rp and The capacitor C likewise represents the parallel 
combination of Cout, C-m, and stray wiring capacitance Cw. 

1 M. Dishal, Design of Dissipative Band-pass Filters Producing Exact Amplitude-
frequency Characteristics, Proc. IRE, vol. 37, pp. 1050-1069, September, 1949; T. C. 
Wagner, The General Design of Triple- and Quadruple-tuned Circuits, Proc. IRE, vol. 
39, pp. 279-285, March, 1951. 

2 M. Dishal, Alignment and Adjustment of Synchronously Tuned Multiple-resonant-
circuit Filters, Proc. IRE, vol. 39, pp. 1448-1455, November, 1951. 

3 D. F. Tuttle, Jr., "Network Synthesis," vol. 1, John Wiley & Sons, Inc., New York, 
1958; see also H. W. Bode, "Network Analysis and Feedback Amplifier Design," D. Van 
Nostrand Company, Inc., Princeton, N.J., 1945. 

Next, let us see what can be done 
with the simplest possible interstage 
network, and let us use the perform­
ance of such a network as a calibration 
for comparing other, more complicated 

amplifier. 

Fig. 7-3 Circuit for a wideband inter­
stage. 
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It must be pointed out here that in 
adding parallel R we have elected to 
explore the wideband case. If we 
wanted a narrow-band amplifier, we 
would add no shunting resistance and 

, would be careful that the inductor L 
Fig. 7-4 Circuit for a narrow-band . . . , , , 
interstage. h a d appropriate losses (Q) to give 

the desired bandwidth. The inductor 
losses, usually considered as a series resistance Rs, are generally the dom­
inant factor in determining the bandwidth, and hence the proper equiv­
alent circuit is that of Fig. 7-4. This case is thoroughly explored in the 
radio-engineering books,1 and we leave it now in favor of the more difficult 
task of maintaining a wide band simultaneously with high gain. 

The gain function A(-p) for the circuit of Fig. 7-3 may be written in 
several equivalent forms, 

Ve2 -gmVslZ(p) 1 
A(p) = — = y ' where Z(p) = (7-1) 

Vel Vgl 1 , 1 
r + - + PC 

pL R 

A(p) = -gmR 
1 

1 + R{pC + 1/pL) 

-gmR ~ = -gmR y (7-2) 
R I P wo\ „ / P «>o\ 

03QL \030 P / \O>0 P / 

A R A 1 
w h e r e ' Q = ZL 

For p= jca A(ju>) = —gmR 
1 

1 + jQ(u/uo — wo/w) 

= -gmR (7-3) 

w coo 
where / = — /o = — 

27T 2.T 
1 For example, F. E. Terman, "Electronic and Radio Engineering," 4th ed., McGraw-

Hill Book Company, Inc., New York, 1955. 
• The definition of Q here is that suitable for a parallel resonant circuit (Fig. 7-3); for a 

circuit in which R, is in series with L, as in Fig. 7-4, Q = WOL/R,. 
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The maximum gain, which is obtained at midband (/ = / 0 ) , is 

|A(ico0)| =gmR (7-4) 

At the upper and lower band-edge frequencies ai2 and wi (or / 2 and fx), 
respectively, the gain is 3 db less than at midband. 

1 

A{3<*ui<*2) = -gmR l ±ji i 1 

/ 2 /o /o /l 1 

or = — = — 

fo 7*2 fi fo Q 
The bandwidth of the stage is 

5 = / 2 - / i = ^ (7-5a) 

l 2 ;r#C 
(7-56) 

The two frequencies/i and/ 2 , at which the magnitude of the gain function 
(sometimes called the "amplitude response," or simply "response") is down 
3 db from that at band center / 0 , are related by 

fi fo „ . j = j (7-6) 

JO J2 
Thus,/o is the geometric mean of/ x and/ 2 , and the passband of the amplifier 
is said to possess "geometric symmetry" about ,f0. 

Notice that in Eq. (7-56) the bandwidth is independent of the center 
frequency f0. In Eq. (7-5a) / 0 appears, but it is also implicit in Q and 
cancels out in the quotient. 

Notice also that in Eq. (7-4) the gain is independent of the center 
frequency. Most important of all, however, observe that, in the product 
of Eqs. (7-5) and (7-4), the gain-bandwidth product GBP is not only 
independent of frequency but is also independent of the resistance R, 

GBP = gain X bandwidth = ~- (7-7) 
Since this is the same equation obtained for the lowpass case [Eq. (3-89)], 
the GBP is independent of whether the amplifier is low- or bandpass. In 
either case gain is inversely proportional to bandwidth. (This is not 
necessarily true for the transistor amplifier.) 
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The product of gain times bandwidth for the single-tuned circuit as 
given by Eq. (7-7) is determined primarily by the tube. Except for stray 
wiring capacitance, the quantity C is largely due to the tube, and so also, 
of course, is gm. This tells us that, in selecting a tube for large gain and 
bandwidth, the gm/C ratio should be as large as possible.1 Moreover, there 
is no benefit in a large gm—such as might be achieved by connecting several 
tubes in parallel—if the capacitance C is increased in the same proportion. 

The expression in Eq. (7-7) is the gain-bandwidth product ( G B P ) , a term 
which we shall distinguish carefully from the gain-bandwidth factor ( G B F ) . 
The latter is a figure of merit that is useful in comparing various interstage 
networks against the single-tuned stage as a yardstick. This is what we did 
in the transient analysis of fast amplifiers; the relative speed of various 
circuits such as shunt peaking was compared with the resistance-coupled 
stage. Thus, the gain-bandwidth factor of a circuit is obtained by taking 
the gain-bandwidth product and dividing it by the gain-bandwidth product 
of the single-tuned stage, namely, gm/2irC. We shall find that for two-
terminal interstages the maximum gain-bandwidth factor is 2.0, while with 
four-terminal networks it can theoretically be as great as TT2/2, or 4.93. 

The gain function A (jco) given in Eq. (7-3) can be simplified if the circuit 
bandwidth is, say, 10 per cent or less. 

co coo w 2 — coo2 (co + coo)(co — coo) 

O>o CO COoCO COoCO 

2(co — co 0) 
== since co = co 0 

coo 

Therefore the gain expression may be approximated for this narrow-band 
case, 

1 
A (jco) ^ - gmR for co ̂  co 0 (7-8o) 

1 + j(2Q /co 0)(co - co 0) 

1 +j(2Q/fo)(f ~ fo) 

Notice that, in this narrow-band case, the function has "arithmetic sym­
metry" about co 0 ; that is, the two frequencies coi and co 2 at which the 
response is down to 70.7 per cent are equally displaced in frequency in­
crement above and below co 0 , or 

coi — COO = O>0 ~ <°2 

f - f - f - f ( 7 ' 9 ) 

Jl Jo -
 JO .'2 

1 For a chart showing the gm, C, and g m / C for currently available commercial tube 
types, see J. R. Whyte, Choosing Pentodes for Broad-band Amplifiers, Electronics, vol. 
25, p. 150, April, 1952; see also Figs. 4-1 and 10-8. 
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(7-11) 

In terms of this normalized variable the half bandwidth of a single stage is 
1.0, since the response is down 3 db at x = ± 1 , and against this we can 
compare the bandwidths for larger numbers of stages. 

|FOi)|-(vT7=j)" <7-I2> 
The particular value xlt the band-edge frequency, i.e., the value of x for 
which the over-all response of n stages is 1/\/2 (— 3 db) compared with the 
midband value of 1.0 (0 db), is given by 

(vrî y=vi (7-i3) 

xx 

= A/21'" - 1 (M4a) 0.833 
xx ^ n > 1 (7-146) 

Now, since the bandwidth for one stage is 1.0, Eqs. (7-14) are also the ratio 

7-2 Multistage Single-tuned Amplifiers (Bandwidth Shrinkage and Gain-Bandwidth Factor). It would be unusual if the gain of one 
stage were adequate; most applications require several stages in cascade. 
The intermediate-frequency amplifier in a radar set might have 10 or more 
stages, while a transcontinental relay link would have hundreds of stages. 

In cascade amplification the gain functions combine in a continued 
product. For a cascade of identical stages the midband gain will be the 
nth power of the stage gain, namely, 

\AUo,0)\ = (gmRr (7-10) 

Simultaneously, the bandwidth will decrease as the number of stages is 
increased. Thus the — 3-db points for one stage become the — 6-db points 
for two stages in cascade, with a resultant smaller separation of the — 3-db 
points for the pair. To solve analytically for the manner in which the 
bandwidth "shrinks," it will be convenient to rewrite Eqs. (7-3) and (7-8) 
with a normalized frequency variable x (see Fig. 7-5) as follows: 

/ 1 \ N 

Selectivity function = F(jx) = I J 
\1 + jx/ 
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of the bandwidth of n stages compared with the bandwidth of a single stage, 

Bandwidth of n stages 
Bandwidth of one stage 

0.833 

V 2 1 / n - 1 (7-16o) 

= / - (7-156) 

The shrinkage of bandwidth due to cascading stages is graphically shown 
in Fig. 7-5. Note that these curves are plotted in terms of the frequency 
variable x, which is not a linear function of actual frequency co. Hence the 
arithmetic symmetry of the gain curves is preserved only for narrow band-
widths on a linear frequency scale. The bandwidth ratio of Eqs. (7-15), 
however, is valid in terms of co as well as x. 

In a cascade of single-tuned stages the gain increases with the number of 
stages according to one law, Eq. (7-10), while the bandwidth varies accord-
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ing to another, namely, Eq. (7-15a). Thus the contribution of one stage 
to the over-all gain-bandwidth product will be different if the stage is used 
alone or in a cascade with other stages. To allow for this in our figure of 
merit, the gain-bandwidth factor (by means of which we shall compare the 
effectiveness of various circuits), we do two things: (1) take the nth root 
of the over-all gain, giving a mean stage gain; (2) divide the mean stage gain 
by gm/2irC. The gain-bandwidth factor is then the product of this normal­
ized mean stage gain times the over-all bandwidth and is a function of the 
circuits used, rather than of the tubes. 

(over-all gain) 1 / B 

GBF = - — — X over-all bandwidth (7-16) 
gm/2wC 

For a cascade of n identical stages, the following holds: 

GBF for n stages / - - 0.833 
— = V 2 1 / n - 1 ^ —J=r 

GBF for one stage V n (7-16o) A phenomenon of both mathematical and practical interest is that for 
a given bandwidth there is a definite maximum of gain which cannot be 
exceeded. There is likewise a maximum bandwidth attainable for a spec­
ified gain. The latter occurs when each stage contributes a gain A; of 1.65 
to the over-all gain A^. The number of stages needed and the resulting 
maximum bandwidth Bmax are given below: 

Ai = V~e = 1.65 = 4.34 db (7-17) 

n = 2 ln A (7-18) 

gm 0.833 

Smax = îV2TÔ  (M9) 

Note that the gain A,- which gives the maximum over-all bandwidth is 
the same as that obtained in the lowpass case to get minimum over-all 
rise time [see Eq. (4-53)]. 

7-3 Selectivity Ratio. It was stated that the filter amplifier has the 
dual objective of amplifying signals within the desired passband and of 
rejecting signals lying outside this band. The ability to reject unwanted 
signals is sometimes called the "selectivity" of the system. Assigning a 
measure to this selectivity is somewhat arbitrary. The simplest approach 
would be merely a graphical plot of amplitude vs. frequency, i.e., the ampli­
tude response. The steepness of the portions of the curve far removed from 
the passband is one kind of measure; it is sometimes called the skirt selec­
tivity, since it involves the "skirts" of the response curve. 
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A better quantitative measure can be provided when it is known that in 
the system where the amplifier will be used the undesired signals will be 
separated from the desired one by fixed frequency intervals. Thus, in 
broadcasting, the stations are assigned to "channels" separated by 10 kc, 
and the severest problem is to reject the signals in adjacent channels. In 
broadcasting, a term is used, adjacent-channel selectivity, which denotes 
simply the ratio of the gain at midband to the gain 10 kc above or below 
midband. Similarly, second-channel selectivity refers to 20 kc above or 
below midband. The same philosophy would apply to multichannel car­
rier systems. 

In the general case, however, where frequency assignments are not so 
ordered, there is another numerical measure of the selectivity that has 
gained acceptance in recent years. This is the so-called selectivity ratio, or 
bandwidth ratio. It is the ratio of the bandwidth at which the amplitude 
response is down 60 db from that at midband to the bandwidth at which 
the response is down 6 db. Thus it could be called the "60:6-db bandwidth 
ratio." Other levels could have been chosen, but these are convenient and 
serve the purpose of evaluating the response well outside the desired pass-
band. Typical values obtained are on the order of 2 for a good communica­
tions receiver and perhaps 12 for a radar system. Clearly, a value of unity 
would be the limiting case. 

For the single-tuned amplifier the selectivity ratio can be easily found by 
using Eq. (7-12) to find the —6- and —60-db frequencies, 

/ i y 1 
I , ^ J = - xa = — 6-db frequency VVl + x2) 2 

/ i Y 1 

I —, ) = — r xb = — 60-db frequency \ V 1 + xb
2J 103 

Solving for xa and xb and forming the ratio xb/xa, we obtain xb IVlO* - 1 
— = selectivity ratio = / —^= (7-20) xa \ v 4 — 1 

F o r n = 1 Eq. (7-20) has the value of 577, an almost useless selectivity 
ratio. As the number of stages n is increased, the ratio drops rapidly 
toward a limiting value of 3.15. For only six stages the ratio is 5.9. Other 
interstage arrangements will turn out to be superior, however. 
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P R O B L E M S 

7-1. A receiver must receive a signal at 20 Mc in the presence of an interfering signal 
at 21 Mc. How many amplifier stages using single-tuned circuits with a Q of 50 must be 
used to give at least 50 db desired-signal-to-undesired-signal ratio? What is the 3-db 
bandwidth of the resulting amplifier? 

7-2. An amplifier consisting of identical single-tuned stages is to be built using 6AH6 
tubes for which gm = 9,000 ^mhos, dn + C o u t + Cm = 17 pf. If the over-all band­
width is to be 20 Mc, what number of stages should be used for maximum gain? Find the 
resulting individual stage bandwidth, over-all gain, and the circuit constants R and L 
for a center frequency of 30 Mc. What is the gain-bandwidth factor of the resulting 
amplifier? 

7-3. For an amplifier employing identical stages using 6AK5's, what is the maximum 
bandwidth obtainable with an over-all gain of 60 db? Assume that gm = 5,000 /imhos, 
C o u t = C i n = 8 pf, and Cw = 5 pf. 

7-4. Prove that the selectivity ratio for n single-tuned stages approaches 3.15 as n 
approaches infinity. 

7-5. Derive the expression below which gives the maximum gain which can be 
achieved with a cascade of identical single-tuned stages when the over-all bandwidth 
B and the gm/2irC for the tube to be used are specified. 

A m a x = 2"2'2' = (1.136)"2 

A gm/2'C 
where a = — - — 

7-6. A certain pentode tube has a gain-bandwidth product of 75 Mc including an 
allowance for wiring capacity. 

a. Find the interstage element values for a single-stage amplifier to give a bandwidth of 
20 Mc at a center frequency of 100 Mc. (Assume that C = 15 pf.) What is the stage 
gain? 

b. Find the interstage element values for a two-stage amplifier to give the same 
over-all bandwidth and center frequency. What is the over-all gain? 

c. Show that it is impossible to construct a multistage amplifier using this tube and 
type of interstage to give a 20-Mc bandwidth and an over-all gain of 10. 

7-7. Verify the expression for Q following Eq. (7-2). Start with the basic definition 
of Q as the ratio of the energy stored to the energy lost per cycle. 

7-8. The circuit of Fig. P7-8 represents a simple extension of the circuit of Fig. 7-3. 
An ideal transformer has been added—an addition which can be approximated by 
tapping down on the inductor L. The modification is said to be "simple" because the 
gain function varies with frequency in just the way as before; i.e., no new resonances 
(natural modes) are introduced. 

-O • i 

- C o u t L f 

1 1 1 0  L +t 
-1 

I d e a l 

Fig. P7-8 
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Show that, when the transformation ratio N is chosen for maximum gain-bandwidth 
product, this product becomes 

2 T ( 2 V C o u t C i n ) 

Show that this gain-bandwidth product is always equal to or greater than that given 
by Eq. (7-7). 

7-9. Assume that an amplifier made up of identical, single-tuned stages employs a 
tube with a gain-bandwidth product of 75 Mc. For an over-all amplifier bandwidth of 
12 Mc compute and plot the over-all gain in decibels vs. the number of stages in the 
amplifier. Assume that the amplifier is made up of 1, 2, 3, . . . stages up to 15. What 
is the maximum gain obtained? Compare the results with those obtained by using the 
equation in Prob. 7-5. 



8 
Generalizations and Interpretations 

Having had a look at a simple form of bandpass, or filter, amplifier, seeing 
what it will do in terms of gain, bandwidth, etc., let us now go from the 
specific to the general. The single-tuned amplifier is only one of many 
possible interstage networks, all of which will have characteristic properties 
in common. Most important of all, their gain functions will have similari­
ties, and the proper interpretation of these will aid us in understanding why 
amplifiers behave the way they do. 

Let us see what can be said about the general nature of amplifier gain 
functions, of which Eq. (7-2) for the single-tuned stage is an example. We 
can rewrite this equation as follows: 

1 
A(p) -gmR 

l + R(PC + l/pL) 
(7-2) 

gm v (8-1) 
C p2 + p./RC + l/LC 

gm v (8-2) 
C (p - Pi)(p - p 2) 

where (8-3) 

^ ( - l ± i V 4 Q 2 - 1) (8-4) 

Q = Rw0C 
1 

LC 
177 
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The pole-zero diagram of an UNDERDAM-PED single-tuned stage as shown in 
Fig. 8-la is a pair of conjugate poles and a zero at the origin if the stage Q 
is greater than J^. The distance from the origin to each pole is always equal 
to the resonant frequency of the stage, o>0, which is also the frequency of 
maximum gain. As the Q of the stage is decreased, the poles move farther 
from the j c o axis but maintain the same distance from the origin. Finally 
for Q = Yi both poles come together on the A axis, forming a double pole 
at <J = — OI0 = —1/2RC (Fig. 8-16). The stage is then said to be critically 
damped although no special passband shape is produced. Further de-

\ 

t -

I 
I 

4 2 -

9 - i 

\ 
\ 

-* £ 

t -

» 0 

( 0 (a) (6) 
Fig. 8-1 Pole locations for a single-tuned circuit with various amounts of damping (Q). 

creases in Q cause the poles to split apart and move along the A axis in such 
a way that the geometric mean of their coordinates is the point A = — c o 0 

(Fig. 8-lc). Even for Q's so low as to cause the stage to be overdamped, the 
maximum of gain still occurs at the frequency c o 0 . 

Consider a stage designed to give a narrow passband. Such a stage must 
have high Q; hence the poles lie very close to the JW axis. If we determine 
the gain of such a stage by the geometric interpretation of the pole-zero 
diagram (Sec. 3-2), we see, as shown in Fig. 8-2, that the gain is given by 

A O ) 

-Or, J W 

C ( j c o - P x ) ( j c o - p2) 
(8-5) 

However, for a high-Q stage, the quotient of the vectors j c o and j c o — p 2 

is almost constant for co in the region of the passband. Hence j ' c o / ( j c o — p2) 
== ]/2, and the gain function may be approximated by 
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From this we see that the gain is influenced most by the nearby pole, and 
the narrow-band approximation of Eqs. (7-8) amounts to neglecting the 
influence of the zero at the origin and the complex pole in the lower half 
plane. A simple geometrical picture of the narrow-band situation is as 
shown in Fig. 8-3, where only the pole pi is shown with a restricted portion 
of the joi axis. A circle centered at oi0 with radius u0/2Q = Br/2 goes 
through the pole p\ and defines the passband edges (Br is the bandwidth of 
the stage in radians per second). Note that for px the radial distance from 

|u 

Pi? - p -joi \p-PiV 
^\P\ 

a* 
P2x 

Fig. 8-2 Pole locations for a narrow­
band stage. 
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Pl\ «. ̂  
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Pl\ «. ̂  
X^ 2Q 

\ 
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N 

Q 

Fig. 8-3 Approximate pole-zero diagram 
for a narrow-band stage (Q > 20). 

the origin rather than the imaginary coordinate actually is equal to ju>0, but 
in the narrow-band situation the two distances are substantially equal. 
The semicircular construction also graphically displays the arithmetic 
symmetry of the narrow-band situation. 

8-1 Properties of Amplifier Gain Functions. Before going on to 
further manipulations in the complex p plane, it might be well to take note 
of some general properties of the pole and zero locations for typical gain 
functions of amplifiers composed of lumped linear circuit elements and 
somewhat idealized linear tubes. The single-tuned circuit which we have 
just examined is, after all, only one case, and we should like to know whether 
other amplifiers will be similar, and in what respects. 

For one thing, we see that we could design for a given amplitude response 
vs. frequency right on the p plane, without recourse to the circuit diagram 
at all. The geometric interpretation shows how the amplitude response de­
pends upon the pole and zero locations, and the potential analogy, which we 
shall develop shortly, will be even more illuminating and useful. Thus we 

file:///p-PiV
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want to know what are the constraints upon where we might move the 
poles and zeros in our attempts to produce some particular gain function. 

Development of the general properties of gain functions properly belongs 
in courses on passive network theory. Most of the significant properties 
are those of the passive structures in the amplifier, changed very little by 
the addition of the tubes (feedback amplifiers being a possible exception). 
Hence we shall here present in summary some of the pertinent findings of 
network theory, but without derivation or proof. The reader is referred 
to Bode 1 for a more nearly complete treatment. 

The remarks will be limited to a single amplifier stage. For a cascade 
amplifier the over-all gain function is simply the continued product of the 
individual stage functions (the effect of feedback being disregarded). 

I. General four-terminal interstage 
A. Physical realizability, including stability considerations, requires 

that all the poles of the gain function lie in the left half plane or else 
on the jco axis. In the latter case, they must be simple poles.2 

B. Minimum-phase-shift networks (which exclude most all-pass lat­
tice, distributed-parameter, and feedback arrangements) have the 
additional requirement that the zeros, too, must lie in the left half 
plane or on the jco axis.3 

C. The number of poles of the gain function must exceed the number of 
zeros by at least 1. This results from the stray shunting capacitance 
requiring that the gain go to zero at infinite frequency. 

D. The poles and zeros must reside either on the a axis or in conjugate 
pairs about the <r axis.4 This is a simple property of the roots of 
an algebraic equation with real coefficients. 

I I . Special cases 
A. Two-terminal interstages. This is—or can be considered to be—an 

elementary form of the general interstage and is subject to greater 
restrictions on the permissible arrangements of poles and zeros. 
1. For physical realizability alone, both poles and zeros must lie in 

the left half plane or as simple poles (zeros) on the jco axis.5 

2. The number of poles must always be 1 greater than the number 
of zeros. This again comes from the shunt capacitance. 

3. I-D still applies. 
B. All-pass networks, including the lattice and bridged-T as used for 

phase-correction networks, etc. (equalizers). 
1 H . W. Bode, "Network Analysis and Feedback Amplifier Design," D. Van Nostrand 

Company, Inc., Princeton, N.J., 1945. 
* Ibid., pp. 24-27, chap. 7, p. 106 in particular. 
3 Ibid., pp. 121, 242-244. 
1 Ibid., p. 106. 
s Ibid., p. 121. 
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1 IBID., p. 239. 
' IBID., p. 241. 

1. Each pole in the left half plane must be balanced by a correspond­
ing zero in the right half plane at an equal distance from the JU 
axis. Another way of stating this is that the zeros and poles are 
negatives of each other; this incorporates I - D . 1 

2. I-A and I-D still apply. 
3. I-C is modified to require an equal number of poles and zeros. 
4. It will become apparent later that the all-pass phase-correcting 

network has a gain function whose magnitude is constant and 
whose phase angle can only decrease with frequency.2 

8-2 Further Interpretations—Basis of the Physical Analogies. 
Although it is possible to derive formally all the general properties of ampli­
fier gain functions by use of algebra and calculus of the complex-frequency 
variable p, it has nonetheless been found instructive to interpret these gain 
functions in terms of one or more physical analogies. In particular, there 
are three physical systems which are governed by exactly the same mathe­
matics as our gain functions and which hence are exact analogies. Each 
of them has certain advantages in making more vivid certain of the gain-
function properties, by virtue of better physical intuition in the analogous 
systems. This better physical intuition is the basis of appeal for this dis­
cussion, particularly for engineers. 

These analogies supplement the "geometrical interpretation" previously 
discussed and like it are based upon the fact that the general gain expression 
can always be written in the factored form 

n(p — pm) 
A(p) = H J Pm)

 (8-7) n(p - Pn) 
or in the logarithmic form 

In A{p) = Z In (p - pm) - E In (p - pn) + In H (8-8) 

where the p — pm are the zeros of A(p) (points of infinite loss) and the 
p = pn are the poles of A(p) (points of infinite gain). We now rewrite this 
equation by taking the natural logarithm of the complex number A(p), 
which has a modulus of magnitude A(p) and argument or phase /A(p), 

In A(p) = In | A(p) \ + j /Ajp) (8-9) 

9(P) 4>IV) 

2(p) = lnH+Z\n\p - pm\- £ l n | p - pn\ (8-10) 

<t>(p) = Z /p - Pm ~ Z /p - Pn (8-11) 
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In particular, for p = jw, 

g(co) = In | A (jco) | = logarithmic gain (8-12) 

~ gain in db 

</>(co) = / A (jco) = amplifier phase shift in radians (8-13) 

The function A(p) is mathematically classed as an algebraic function, 
always a rational fraction, and therefore is always analytic except at the 
poles. The logarithm [lnA(p)] is also analytic, except at the poles and 
zeros of A(p). There are useful relationships, known as the Cauchy-
Riemann conditions, which interrelate the real and imaginary parts of 
analytic functions with respect to the real and imaginary parts of the varia­
ble p = a + jco, 

ag(p) /01„, 
(8-14) 

da dco 

ag(p) = _ 
dco da 

(8-15) 

It also follows that Laplace's equation must hold for both real and imaginary 
parts (except at the poles and zeros), 

d2Q 3 2 q 

+ ( 8 " 1 6 ) 

d2<i> d2<i> 
o<r dco 

8-3 Electrostatic Analogy. The appearance of Laplace's equation 
suggests at once the possibility of using electrostatic potential as the basis 
of an analogy which is well known to specialists in network theory.1 The 
analogy not only provides some degree of physical intuition but also makes 
available for the solution of network problems a highly developed array of 
mathematical techniques used in electrostatic-potential problems. In 
contrast to the other two analogies, which will be described later, it provides 
no convenient means of experimentation. 

The electrostatic interpretation consists in looking at a situation such 
as that of Fig. 8-2 and imagining the poles to be positive line charges, 
infinite in length, piercing at right angles the p plane at the locations p\ and 
p2. The zero at the origin is considered a similar line charge, but negative 
instead of positive. Then the magnitude of the amplifier response g(co) is 
exactly proportional to the electrostatic potential along the jco axis. Intui-

1 S . Darlington, The Potential Analogue Method of Network Synthesis, Bell System 
Tech. J., vol. 30, pp. 315-365, April, 1951. 
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tion becomes available at once, as exemplified by the fact that the gain 
(potential) is seen to increase when a pole (positive charge) is brought closer 
to the ja axis. 

The validity of the analogy can be demonstrated, starting with the ap­
plication of Gauss's law to the line charge, enclosing a unit length of it with 
a small cylindrical volume of radius r, as shown in Fig. 8-4. Gauss's law 
involves integrating the outward flux density over the surface and equating 
it to the total charge contained within. The geometry of the situation re­
veals that the flux will be entirely radial; let the flux density then be Dr. 
It is convenient to let the charge per unit length be q; then 

D d s = 47rg (8-18) 

= Dr-2rr (8-19) 

The flux density is related by the dielectric constant to the electric field E, 
which in turn is equal to the gradient of the potential V, 

D = e E = e ( - V F ) (8-20) 

A - ( T ) - • ( - £ ) ( 8 - 2 1 ) 

The potential V is obtained by integrating Eq. (8-21), 

2q 
V = - — In r + K (8-22) 

t 

For convenience let 2q/e = 1. Then, if several charges are present, each 
of the same strength but some positive and some negative, the total po­
tential (a scalar quantity) is the algebraic sum of the in­
dividual contributions, 

TO n 
F = if + £ In n - £ In r, 

(8-23) ^ T ^ \ 
m negative n positive 

charges charges 

In p-plane coordinates, the charges are located at p* 
and py, hence at any point p Line charge 

ri = \P - Pi\ ' 
(8-24) Fig. 8-4 Construc-

Tj = \p — Pj\ ti°n ' o r finding the 
electric field pro-

T7 v i i i i v-> i i , ,
 duoed

 hy a l i n e 

v = K + 2^ In IP - Pi\ ~ 22 In \p - Pj\ (8-25) charge. 
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The analogy between Eqs. (8-10) and (8-25) is now apparent; the poten­
tial V is the analogue of the amplifier gain magnitude 9(p). Similarly the 
scale factor K corresponds to ln H, although this is not an important rela­
tionship when we are concerned primarily with how gain functions vary as 
one changes pole coordinates, etc. 

We can now generalize the scalar potential into a complex function 
V + J<P by incorporating the orientations as well as the magnitudes of the 
p — pi and p — pj. The real part of this complex potential is the same as 
before, i.e., that of Eq. (8-25), whereas the imaginary part $ (usually called 
the "stream function") defines the electrostatic flux distribution, 

m n 

* = Ti/V- Vi ~ Z / P - Pi (8-26) 

It can be seen that this stream function is the direct analogy of the amplifier 
phase function <b in Eq. (8-11). Laplace's equation and the Cauchy-Riemann 
conditions hold for both V and 

V 2 7 = 0 

V 2 $ = 0 

dV a* 
DCR DCO 

dV D<P 

DCO da 

(8-27) 

(8-28) 

Notice now that 

dV 1 D$ 
= - E . = - - D . = + — 

da e DCO 

/•»» f" dV 1 f 
*(CO) = / — da = / — CICO = - - / A , RICO (8-29) 

Jo do> Jo da e J0 

Thus $(CO), which is analogous to the amplifier phase shift D>(CO) at the fre­
quency CO, is proportional to the total transverse electrostatic flux crossing 
the JCO axis between 0 and CO. Other correspondences can be developed and 
will be found in Table 8-1, page 191. 

8 -4 Conduction Analogy. There is another analogy which utilizes 
d-c or low-frequency current flow in a two-dimensional medium corre­
sponding to the p plane. The medium can be an infinitesimally thin con­
ducting sheet, or, what is equivalent, a sheet which is of finite but uniform 
thickness and in which all electrodes penetrate to full depth so that there 
is no variation of current flow with depth. The thin sheet can be provided 
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in the laboratory by a paper with 
resistive coating,1 while the medium _ ^ - T ~ ~ ^ J 

of finite thickness can be a tank of — / S v J Z * ^ r — C ° sheet " 8 

conducting liquid or electrolyte.2 

Both arrangements have been used 
for experimental work, and by the F . g g _ 5 C o n s t r u c t i o n f o r finding t h e 

exerc ise of considerable care it is c u r r e n t d e n s i t y produced by a current 
evidently possible to obtain useful source on a conducting sheet, 
quantitative results. Another elec­
trical analogy which will be mentioned later is simpler for precise experi­
mental work, while for rough work the elastic membrane to be described 
next is very effective. 

Consider a two-dimensional conducting sheet, infinite in extent, of re­
sistivity p ohms/square, and with a current / entering the sheet at a point. 
At a radius r from this point, the current density J is only in the r direction 
because of symmetry and is constant in magnitude around the perimeter 
of a circle of radius r (see Fig. 8-5). The relationship between current 
density and radius is obtained by summing the total outward current 
around the circle, 

J d l = Jr X 2wr = I (8-30) 

Jr = ^- (8-31) 

2irr From the incremental version of Ohm's law, the current density is related to 
the electric field E and hence to the gradient of potential ("voltage 
gradient"), 

E 1 
J = - = - ( - V 7 ) (8-32) 

P P 

1 / dV\ 

pi 
V = ln r + K (8-34) 

2 7 T 
1 R . E. Scott, Network Synthesis by the Use of Potential Analogs, Proc. IRE, vol. 40, 

pp. 970-973, August, 1952. 
2 W. W. Hansen and 0 . O. Lundstrom, Experimental Determination of Impedance 

Functions by the Use of an Electrolytic Tank, Proc. IRE, vol. 33, pp. 528-534, August, 
1945; A. It. Boothroyd, E. C. Cherry, and It. Makar, An Electrolytic Tank for the 
Measurement of Steady-state Response, Transient Response, and Allied Properties of 
Networks, Proc. IEE (Lokdon), pt. I, vol. 96, pp. 163-177, May, 1949; A. R. Boothroyd, 
Design of Electric Wave Filters with the Aid of the Electrolytic Tank, Proc. IEE 
{London), pt. IV, vol. 98, mon. 8, 1951; E. C. Cherry, Application of Electrolytic Tank 
Techniques to Network Synthesis, Proc. Symposium on Modern Network' Synthesis, 
Polytechnic Institute of Brooklyn, N.Y., April, 1952, pp. 140-160. 
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This corresponds to Eq. (8-22) for the electrostatic case, and further de­
velopment can proceed in similar fashion. Thus, if there are several cur­
rent sources, some positive and some negative, each of unit strength 
pl/2ir = 1, the total potential at any point by use of the principle of super­
position is 

m n 

V = K + T>ri - £ l n r y (8-35) 
m negative n positive 

currents currents 

In p-plane coordinates 
m n 

V = K + £ l n | p - P i | - £ l n |P - VA (8-36) 
There is also a complex potential in which the stream function corresponds 
to current flow. Current density J in the conduction analogy corresponds 
to flux density D in the electrostatic analogy. 

m n 
V + i $ = K + £ In (p - P i ) - £ In (p - pi) (8-37) 

As before, both potential V and stream function $ satisfy the Cauchy-
Riemann conditions and Laplace's equation. This can also be shown from 
the divergence relationship, which expresses the fact that the current enter­
ing an elemental area must equal the current leaving (except where there 
are sources or sinks), 

dJa d j a 

V J = — + — = 0 (8-38) 

3(7 dco 

p-plane coordinates 

As in Eq. (8-33), Ohm's law gives 
1 dV 

Ja = 

p d<r 
(8-39) 

1 dV 

p d« 
Substituting in Eq. (8-38) gives Laplace's equation in V, 

d2V d2V 

da2 do> 
2 + - ! - = V 2 K = 0 (8-40) 

The matter of phase shift in the amplifier is illuminated by the analogy, 
if we recognize that the stream function <I> is the analogous quantity. Along 
the jco axis, 

3$ dV 

-pj, (8_4i) 
au oo 
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Thus the amplifier phase slope, i.e., the rate of change of phase shift with 
frequency (also the "envelope delay" or the inverse of the "group veloc­
ity"), is proportional to the transverse current density. This suggests 
that for linear phase shift, i.e., constant phase slope, the poles of an amplifier 
gain function should be so arranged that in the current analogy a nearly 
constant transverse current density results along the jco axis. An arrange­
ment with uniform pole spacing in the jco direction can be expected to be 
favorable. 

The phase shift at a given frequency co can be determined from the 
analogy by the total current crossing the jco axis between 0 and co, 

In considering the use of the conduction analogy for experimental work, 
one is confronted by the problem of size. Theoretically the conducting 
medium should be infinite in extent, but reasonably good results can be 
obtained if the area is considerably greater than that area near the origin 
containing all the poles and zeros under study. A conducting boundary is 
used, usually a circle in shape, at the perimeter of the medium, which pro­
vides the return electrode for the current entering or leaving at the poles 
and zeros. (This current is taken by the poles or zeros at the point of in­
finity.) 

By consideration of property 1-D in Sec. 8-1, one can reduce the required 
area of the conducting medium by one-half; since poles or zeros occur in 
conjugate pairs about the <r axis, there will never be current flow across the 
a axis and the conducting medium can just as well be terminated in an in­
sulating boundary along this axis.1 All the information desired about 
amplitude and phase response can be found in the upper half plane of the 
analogy. In fact, it will later be shown during the discussion of "image 
poles" that, by proper attention to boundaries, only the third quadrant 
need be used, i.e., the left half of the upper half plane. 

Experimental work with the conduction analogy is carried out by supply­
ing unit currents to the electrodes—positive for poles and negative for 
zeros—and then measuring potentials on the resistive paper or in the liquid 
electrolyte by means of a high-resistance voltmeter, usually of the vacuum-
tube variety. Relative potential along the jco axis is a direct measure of the 
logarithmic gain magnitude. Phase shift, on the other hand, involves know­
ing the total transverse current, which nevertheless can be measured with 
the same voltmeter. The phase slope is proportional to the transverse 
current density, which from Ohm's law will be indicated by measuring the 

1 An electrode on the a axis, representing a pole or zero there, should then introduce 
only one-half unit current, which is the portion normally entering the upper half plane. 

(8-42) 
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transverse potential gradient. Thus, if the voltage difference is measured 
between two points close together on a line perpendicular to the jco axis, the 
voltage is proportional to the phase slope at that value of co. This phase 
slope can be plotted versus co, and by graphically or numerically integrating 
this curve the curve of phase versus co can be derived. 

8-5 Membrane Analogy. Consider a two-dimensional elastic mem­
brane, infinite in extent, with a constant tension T per unit distance; i.e., 
if the membrane had a cut of unit length, there would be a total force T 
normal to the cut. For convenience of discussion only, the membrane is 
assumed to lie in a horizontal plane, although gravitational force is neg­
lected in comparison with the tension forces. We examine the downward 

Section of 
membrane surface 

Fig. 8-6 Construction for finding the deformation of an elastic membrane. 

vertical forces per unit area occurring when a region of the membrane has 
been distorted upward from its horizontal position. Let H be the vertical 
displacement from horizontal. The membrane tension T can be resolved 
into two components in the A and the co directions, to use our familiar p-
plane coordinates. Each component contributes to two vertical forces FX 

and F 2 acting on an elemental area, shown in Fig. 8-6 for the contribution 
due to the A component of the tension. The expressions for these two forces 
are given below, together with the net vertical force, as the size of the ele­
mental area is reduced toward zero. 

FX = T Aco sin 6 (8-43) 
DH 

^ T Aco tan 6 = T Aco — for small 6 (8-44) 
DA 

DF D2F (ACT) 2 

— ACT + — 
DA DA2 2! 

DF 
= FX-\ ACT for small ACT (8-46) 

DA 

DF 
F 2 - FX^—A<R (8-47) 

DA 
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d2h 
F2 — Fi = T &u — - A<r (8-48) 

da2 

A similar difference of vertical forces exists due to the CO component of 
tension, 

d2h 
F2 - Fx ^ T A.<R — ACO (8-49) 

DCO2 

The net vertical force on the elemental area is the sum of Eqs. (8-48) and 
(8-49), 

/d2h d2h\ 
Net F = T [ — - H r ) AOR ACO (8-50) 

\6V DCO / 

The net vertical force per unit area, i.e., the pressure, is obtained by divid­
ing by the area ACT ACO, 

/d2h d2h\ 
Net pressure = T I — H -) (8-51) 

\DCR DCO / 

If the region of the membrane is not subjected to external pressure, the net 
pressure must be zero for equilibrium. Hence, since T is not zero, then 

d2h d2h 

^? + ^-° < M 2 > 

Equation (8-52) is Laplace's equation, and thus there is a direct corre­
spondence or analogy between height of the membrane and the amplifier 
gain magnitude or the potential in the electrostatic and conduction analo­
gies. Moreover, if on the membrane we draw a family of contour lines, 
i.e., lines of constant height, or elevation, we can also draw an orthogonal 
set, the lines of steepest descent. These latter lines correspond to the 
electrostatic-flux or conduction-current flow lines and contain the phase-
shift information concerning our amplifier gain functions. 

We are interested primarily in the amplitude variation of the amplifier 
gain along the JCO axis. In the membrane analogy we have a sort of "relief 
map" as shown in Fig. 8-7 for one situation; and the profile of the surface 
along JCO is a true plot of the amplitude (logarithmic) response versus CO. 
Moreover, the "tilt" of the membrane transverse to JCO is proportional to 
the phase slope d<b/du of the amplifier, implying that for linear phase the 
transverse tilt of the surface should be closely constant. 

In spite of the assumptions in the derivation, namely, a membrane in­
finite in extent and with very small displacements, simple physical models 
can be built which vividly portray the amplifier behavior. Remarkably 
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enough, one's physical intuition is sufficiently keen so that with the elastic-
membrane analogy most of the insight is acquired from mental images 
before a model is actually built! 

8-6 Summary on Analogies. The principal results are summarized 
in Table 8-1. While it is evident that any one of the analogies is completely 
self-sufficient, additional insight is gained from knowledge of several. The 
electrostatic analogy provides a measure of physical intuition but is quite 
unsuited to experimental work. It does, however, open up a broad area of 
mathematical insight and analysis techniques based upon much existing 
work in electrostatics. The conduction analogy provides a limited amount 

Fig. 8-7 (a) Lowpass pole positions to give an approximation to both constant gain 
and phase in the passband. (6) View of the membrane analogue, (c) The resulting gain 
magnitude and phase. (FROM W. E. BRADLEY, DESIGN OF A SIMPLE BAND-PASS AMPLIFIER 
WITH APPROXIMATE IDEAL FREQUENCY CHARACTERISTICS, TRANS. IRE, VOL. PGCT-2, PP. 30-38, 
DECEMBER, 1953.) 
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A m p l i f i e r g a i n 
f u n c t i o n A(p) 

E l e c t r o s t a t i c 
a n a l o g y 

C o n d u c t i o n 
a n a l o g y 

M e m b r a n e 
a n a l o g y 

G a i n m a g n i t u d e ( l o g ) 
o n jco a x i s 9(«) = In \A(jo>) | S c a l a r e l e c t r o s t a t i c 

p o t e n t i a l F ( o > ) 
P o t e n t i a l V(to) 

H e i g h t ( d i s p l a c e m e n t ) 
( h o r i z o n t a l m e m b r a n e ) h(w) 

P h a s e s l o p e 
( e n v e l o p e d e l a y ) 

0o» \ da/ 
F l u x d e n s i t y ( t r a n s v e r s e ) 

-?:) 
C u r r e n t d e n s i t y 

( t r a n s v e r s e ) 

*(---:?) 

S l o p e ( t r a n s v e r s e ) 

( g r a d i e n t ) dh da 
P h a s e s h i f t 

* ( « ) 

T o t a l f l u x ( t r a n s v e r s e ) 

r = / Dffdco Jo 

T o t a l c u r r e n t ( t r a n s v e r s e ) 

r 
— / J a dco 
Jo 

fmdh \ dco Jo da 
P o l e ( p o i n t o f 
i n f i n i t e g a i n ) 

U n i t p o s i t i v e l i n e c h a r g e E l e c t r o d e c a r r y i n g u n i t 
p o s i t i v e c u r r e n t 

( i n t o p l a n e ) 

U n i t " p o s i t i v e " f o r c e 
( u p w a r d ) 

Z e r o ( p o i n t o f i n f i n i t e 
l o s s ) 

U n i t n e g a t i v e l i n e c h a r g e E l e c t r o d e c a r r y i n g u n i t 
n e g a t i v e c u r r e n t 

( f r o m p l a n e ) 

U n i t " n e g a t i v e " f o r c e 
( d o w n w a r d ) 

C o n s t a n t - g a i n c o n ­
t o u r s ( i n p p l a n e ) 

E q u i p o t e n t i a l s E q u i p o t e n t i a l s C o n s t a n t - h e i g h t 
c o n t o u r s 

C o n s t a n t - p h a s e 
c o n t o u r s 

( i n p p l a n e ) 

F l u x l i n e s C u r r e n t flow l i n e s L i n e s o f s t e e p e s t d e s c e n t 

N O T E S : C o o r d i n a t e s f o r a l l s y s t e m s : p = a + jw 
e = r e l a t i v e d i e l e c t r i c c o n s t a n t ( a i r = 1) 
p = r e s i s t i v i t y 0 

of physical intuition, but is well suited to accurate experimentation. Fi­
nally, the membrane analogy gives the best physical insight and can be 
readily modeled. Actually, for experimental work, an altogether different 
approach is perhaps most promising; complex quantities are represented by 
a-c phasors, and by means of analogue-computer techniques such as loga­
rithmic networks, adders, etc., an all-electronic system can be assembled 
which provides cathode-ray-tube plots of amplitude and phase after the 
pole locations have been set.1 

8-7 Conformal Mapping. Problems such as those presented by the 
finite size of the conducting medium can be reduced through the use of 
conformal mappings of the p plane.2 Moreover, the solution of problems 

1 J. R. Ragazzini and G. Reynolds, The Electronic Complex Plane Scanner, Rev. Sci. Instr., vol. 24, pp. 523-527, July, 1953. 
2 W. H. Huggins, A Note on Frequency Transformations for Use with the Electrolytic 

Tank, Proc. IRE, vol. 36, pp. 421-424, March, 1948. 

Table 8-1 
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in terms of the electrostatic analogy can often be expedited through the 
use of such mappings.1 The subject cannot be fully developed here, but 
illustrations can be given. The mapping procedure is mathematically rig­
orous and is made possible by the fact that we are dealing altogether with 

t. 
/ 

/ 
/ 

/ 
/ 
/ 

1 

\ P plane 
PP \ 

/ \ 

A \ / 9 \ i | 8 = ir 0 = 0 
a 

1 1 6 = * 

jr = 0.01 b- = 0.1 r = l j r - 1 0 !r = 100 

] 1 6 =0 

| j 1 1 U 

J j 1 | 6=-T 

W plane 

Fig. 8-8 Illustration of the transformation W = In P. 

analytic functions. For our purposes here, the process can be viewed merely 
as a change in the coordinate system. In this change, quantities like poten­
tial in the electrostatic or conduction analogy or height in the membrane 
analogy remain invariant, but contour lines are warped by the modification 
of the coordinates. Moreover, large sections of the p plane can be made 
to "disappear" to infinity or semi-infinite regions made finite by the 
mapping process. 

1 D. L. Trautman, Jr., The Application of Conformal Mapping to the Synthesis of 
Bandpass Networks, PROC. SYMPOSIUM ON MODERN NETWORK SYNTHESIS, Polytechnic 
Institute of Brooklyn, N.Y., April, 1952, pp. 175-191. 
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A useful mapping function (or transformation) is w = In p, or more ex­
plicitly 

w = u + jv = In p = In r + jB (8-63) 

where p = r^e 

This equation maps the p plane into rectangular strips in the w plane, as 
shown in Fig. 8-8. The entire p plane is contained in an infinitely long 
strip which is 2ir units high in the w plane. As already shown for the con­
duction analogy, no current crosses the a axis in the p plane and as a result 
the plane may be cut along the a axis. This is the same as putting an 
insulating boundary along the axis to ensure that no current crosses the 
axis. The cut <r axis corresponds to cutting along the lines v = 0 and 
v = 7r; therefore only that portion of the w plane between these lines need 
be retained. In the practical use of the analogy, the horizontal dimension 
of the sheet is actually finite, but the mere addition of each vertical strip 
corresponds to a tenfold increase in the diameter of the p plane. Hence 
sufficient accuracy is readily attained. The left and right boundaries are 
made with vertical conductors (conducting strips) into which flow the 
currents representing the poles and zeros at the origin and the point of in­
finity, respectively. This transformation is particularly valuable for band­
pass situations where the origin and point of infinity need not be repre­
sented. Even though the frequencies of exactly 0 and oo are never in­
cluded, one may go to sufficiently low or high frequencies by using enough 
decades so that the behavior at 0 and » may be inferred. 

Another transformation maps the entire semi-infinite upper half plane 
into the interior of the unit circle in the w plane.1 

3 ~ V 
w = (8-54) 

3 + V 
The corresponding coordinates are shown in Fig. 8-9, together with several 
points labeled for comparison. In a conduction analogy, the perimeter 
of the circle in the w plane would be an insulator, in recognition of the fact 
that no current crosses the c axis in the p plane. Likewise, any electrodes 
on this boundary must carry only one-half unit current, corresponding to 
the current which enters only the upper half of the p plane. 

A third transformation makes possible the design of an amplifier gain 
function having an "equal-ripple" amplitude characteristic; i.e., within 
the specified passband the magnitude of the gain function varies about a 
mean value, equally above and below, within specified limits. This func­
tion will be discussed in Chap. 9; it has several practical advantages from 

'This is one form of the same transformation used in deriving the so-called Smith 
chart used in transmission-line problems from a semi-infinite rectangular impedance 
plane. 
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the standpoints of gain-bandwidth and selectivity. The problem is how to 
arrange the poles (on the assumption of an all-pole function) in the p plane 
so that the gain-function magnitude measured along the jw axis will have 

t 
1 t. 
1 

D •yi p plane 

A 
i 

B C 
1 1 

+ 1 
1 

- 1 

A 

Fig. 8-9 The mapping of the upper half of the p plane into a unit circle by the trans­
formation w = (j — p ) / ( j + p). 

this equal-ripple variation. In terms of the electrostatic analogy, it is not 
hard to visualize that the potential would have the equal-ripple nature if 
there were an infinite row of uniformly spaced charges parallel to the jco 
axis and displaced from it by a distance a. Now, if such a situation can 
result from a suitable mapping of a finite region of the p plane, with a finite 
number of poles or charges, the problem is solved. A suitable transforma­
tion is p = sinh w and is illustrated in Fig. 8-10. 
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It will be noted in Fig. 8-10 that the infinite row of poles in the w plane 
transforms into a finite number of poles in the p plane, distributed around 
an ellipse and in both left and right half planes. The ones in the right half 
plane are not permitted in the amplifier gain function for reasons discussed 
in Sec. 8-1; yet they can readily be discarded. In so doing the electrostatic 
analogy makes it plausible that there remains an equal-ripple response. 
From the symmetry of the situation, the poles (charges) in the right half 
plane will make the same contribution to the potential along JCO as those 
in the left half; hence removing them will have the simple consequence of 

P Plane B -sinh A I -*-
K\ 

X F 

\ 
E 

J cosh A X 

Foci I sinh A  =̂  
-J cosh A 

G x I w plane J 

i x 
f* 

Fig. 8-10 Transformation w = sinh p. 

merely reducing the potential at all points along the JCO axis by Ĵ -1 The 
poles in the right half plane can be called "image poles," which brings us to a 
new topic. 

8 -8 Image Poles (or Zeros). When one is concerned primarily with 
amplitude response along JCO, it is frequently convenient, both in mathe­
matical analysis and in the use of the analogies just described, to employ 
"image poles." Thus, if Fig. 8-1 la represents the singularities of the actual 
gain function, then the pole-zero arrangement of Fig. 8-116 is the corre­
sponding function with image poles. Analytically, the use of image poles 
is the same as multiplying the complex function A(p) by A( — p) since the 
singularities of A{p) occur 180° from the singularities of A(p), as in Fig. 
8-116. The contribution to the potential along the JCO axis by the poles and 
zeros of A (p) is exactly equal to the potential contributed by their images 

1 In terms of the membrane analogy, removing the right-half-plane poles lowers the 
height of the membrane by J ,̂ but the membrane still has the same shape along the JU 
axis. However, removing the right-half-plane poles does cause a TILT in the membrane 
transverse to the JU axis which was not there before. Hence the phase functions which 
are represented are different. 
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since the distance from any point on the ja axis to a pole (or zero) is equal 
to the distance to its image. Hence the potential along the ja axis is 
twice that obtained with no image poles and zeros. Since this corresponds 
to 2 In \A (ja) |, the function we have obtained is 

A(p)A(-p)\p=ju = \A(ja)\2 (8-55) 

That the phase of this function is everywhere zero is shown by the fact that 
at each point on the ja axis the transverse current density due to the singu-

PS PS -ps 

2 -Zi 
a 

and ~Z2 Pi* P>* ~PS 

(a) (6) 

Fig. 8-11 (a) Pole-zero diagram. (6) Pole-zero diagram with image poles to give only 
amplitude information. 

larities of A (p) is exactly canceled by the current density due to the singu­
larities of A( — p). (Note the similarity to the situation along the <r axis, 
where, also because of symmetry, no current crosses the axis.) The trans­
verse current density is analogous to d<p/da, the phase slope; therefore the 
phase is everywhere zero (the phase could also be IT). 

In a similar manner image zeros [for poles of A(p)] may be used if only 
phase information is desired. These added singularities shown in Fig. 8-12 

Zi z2 
- € 1 

Zi 
- e — 

(a) (6) 

Fig. 8-12 Illustration of the use of image zeros. 
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correspond to the function 
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M-P)I 
= 2/AU») (8-56) 

This may be demonstrated by considering the potential along the jco axis: 
the potential at any given point caused by the singularities of A(p) is 
exactly equal in magnitude, but opposite in sign, to the potential caused by 
the singularities of A(—p); hence the potential is everywhere zero along 
the ju axis (or constant since the potential is defined only to within an un-

Fig. 8-13 Possible simplifications for specific applications of the conduction analogy, 
(a) Whole plane approximated by finite circle. All information present—errors increase 
as poles and A approach R. (b) Whole plane approximated by semicircle. Same informa­
tion along to axis as in (a), (c, D) Planes useful only for MAGNITUDE information along 
the w axis. V(JA{) is twice value obtained in (a) or (6). (e, / ) Planes useful only for 
PHASE information along the w axis. The / A (JWJ) is twice that obtained from (a) or 
(6). (The numbers by the poles and zeros indicate the relative currents which must be 
applied.) 
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SECTION THRU A-A 

Fig. 8-14 A method of eliminating the 
errors due to finite tank size in the con­
duction analogy. The conducting 
medium here is an electrolyte of uni­
form depth. The conducting path is 
folded under at the edge, and the point 
of infinity lies directly beneath the 
origin. 

1 Boothroyd, Cherry, and Makar, OP. CIT. 

known additive constant). However, the current density crossing the j « 
axis at each point is doubled, since the current contributions of the poles 
and zeros of A (p) and A (—p) are equal and additive. Thus the phase func­
tion along thejw axis is doubled, as shown in Eq. (8-56). 

Several examples of the use of image poles and zeros are shown in Fig. 
8-13. As mentioned before, only the upper half plane need be used, as 

shown in Fig. 8-136. In addition, if 
only magnitude information is desired, 
the upper half plane with image poles 
may be used, as in Fig. 8-13d With 
the image poles no current crosses the 
jw axis, and the plane may also be 
cut, as shown in Fig. 8-13c. On the 
other hand, if phase information only 
is desired, image zeros may be used, as 
in Fig. 8-13/. Use may be made of 
the fact that the voltage along the jco 
axis is a constant, allowing the plane 
to be cut along the jw axis as well 
and a conducting boundary added to 
maintain the required constant poten­
tial (Fig. 8-13e). These same concepts 
may be used in connection with the 
other analogies, but the maintenance 
of the necessary boundary conditions 
may not be so easy as in the case of 
the conduction analogy. 

Numerous other techniques may be 
employed to improve the analogies 
for use in experimental work. An ad­
ditional one of interest is a method of 

reducing the error due to the finite size of the conducting medium, as shown 
in Fig. 8-14. Here the p plane is inverted outside of the circle used for ex­
periments so that the point of infinity becomes the center of a circle placed 
under the part of the p plane to be used.1 The two conducting circles are 
joined at their rims to form the entire infinite p plane. 

P R O B L E M S 

8-1. What is the locus of pole locations in a single-tuned stage as L is varied but R 
and C remain constant? Make a sketch to show your result, and indicate the limiting 
positions of the poles a s i - ^ « and L —> 0. 
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8-2. Using graphical means, compute the gain as a function of frequency for the 
following pair of amplifier stages. Do this for a frequency range slightly greater than 
the bandwidth of the two stages. What is the gain at band center (midway between the 
two band edges)? What is the bandwidth of each of the two stages? What would 
the bandwidth of three pairs of such stages be (i.e., six tubes)? 

Stage 1 
C = 15 pf 

fo = 20.35 Mc 

i j = 14,530 ohms 

gm = 2,000 /imhos 
Stage 2 

C = 20 pf 

fo = 19.65 Mc 

R = 11,280 ohms 

gm = 3,000 Mmhos 

Use any appropriate simplifications. 
8-3. A piece of resistance paper 12 in. wide, as shown in Fig. P8-3, and effectively 

infinite in length is intended to represent the upper half of the p plane. 
a. What distance in the x direction corresponds to 1 octave of frequency (i.e., a 

frequency ratio of 2:1)? 
6. A single-tuned stage with /o = 1 and B = 0.5 is to be represented on the sheet. 

Show where to place the probe representing the pole, and indicate the relative magnitude 

u = 0 a = 12in. w=oo 
Fig. P8-3 

of all the currents entering and leaving the analogy. (HINT: A useful check is Kirchhoff's 
current law!) 

c. A shunt-peaked pentode stage with m = 0.5 is to be represented on the sheet. Show 
the pole and zero locations on the sheet for a bandwidth of 1.0 radian/sec. Again show 
the relative magnitude of all currents. 

8-4. A conduction analogue is set up consisting of a 16-in.-radius circle of resistance 
paper, with a conducting rim. The analogue is calibrated by supplying 1 ma current to a 
single probe located at the center of the circle. The potential of a point 8 in. from the 
center is found to be 0.25 volt relative to the rim. 

a. What is the resistivity (ohms per square) of the paper? 
b. Is there any error in the above procedure due to the finite size of the medium? 

Why? 
c. It is desired to arrange the analogue so that a 0.1-volt difference in potential cor­

responds to a 1-db change in gain. What current must be supplied to each pole? 
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d. If the quarter circle is used with appropriate boundary conditions for finding gain 
magnitude, what is the required current per pole for 0.1 volt again to correspond to 1 db 
if (1) the pole is one of a conjugate pair or (2) the pole lies on the a axis? 

8-5. This problem concerns the conduction analogy. A circular electrolytic tank has 
been set up in the laboratory, as shown in Fig. P8-5, and filled with an electrolyte such 
as copper sulfate and water. The rim of the tank is a conductor through which flow the 
currents which go to infinity. The electrode currents are supplied from a transformer 
through high series resistances to provide constant-current a-c sources. (Alternating 
current is necessary to prevent errors due to polarization of the electrolyte.) Voltages are 
measured with a high-impedance vacuum-tube voltmeter. The reference point for the 
voltmeter can be any constant voltage, since adding a constant voltage to all the readings 
merely amounts to multiplying the gain function by a constant. It is convenient to 
connect the free terminal of the voltmeter to an adjustable tap on the transformer to 
allow setting the voltmeter reading to zero at some chosen point in the tank. In this way 
the important voltage differences may be read more accurately. (The data show that 
the origin was chosen as the point of zero voltage.) 

The problem is to convert actual voltmeter readings into relative gain in decibels for 
the amplifier which is represented by the pole-zero configuration set in the tank. Note 
that a singularity is represented by a conductor inserted clear to the bottom of the tank 
so that there is no variation in potential with depth. The conversion can readily be 
accomplished with the aid of some calibration data obtained by placing a single pole at 
the center of the tank. 

a. Plot the calibration data on semilogarithmic graph paper, and determine the 
scale factor for the tank, i.e., volts per decibel. How might you explain the relatively 
large error in the voltage read for the first point? Why is the difference between the read­
ings at 0 and 0.25 in. only 11.2 volts instead of infinity as it should be? Does the fact that 
this difference is finite influence the accuracy of the calibration of the tank? 

6. Plot the measured amplifier characteristic in terms of decibels and inches. 
c. The pole-zero diagram shown in Fig. P8-5 could have been a representation of a 

shunt-peaked pentode stage with m = 0.414. Assuming the coordinate of the zero is 
—3 in., what is the conversion factor between inches measured on the ju axis of the 
analogy and frequency? (Obviously this will involve the B, L, and C of the shunt-peaked 
stage. Refer to Fig. 4-2.) 

Distance from tank 
center, in. 

Calibration data, 
volts 

Amplifier repre­
sentation, volts 

0.00 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
2.00 
2.50 
3.00 
4.00 

0.0 
11.2 
13.4 
14.7 
15.6 
16.4 
17.1 
18.1 
18.9 
19.6 
20.5 

0.0 
0.0 
0.0 
0.0 
0.05 
0.16 
0.33 
0.75 
1.38 
1.90 
3.00 
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representation 
Fig. P8-5 

d. Data were also taken on the tank for the determination of phase shift. The two 
voltmeter probes were positioned parallel to the <r axis and J^6 in. on either side of the 
joi axis. From the following data calculate and plot the phase curve versus w: 

w, in. V, volts 
0.25 0.198 
0.75 0.244 
1.25 0.261 
1.75 0.227 
2.25 0.181 
2.75 0.133 
3.25 0.092 
3.75 0.068 



9 
Commonly Used Functions 

for Approximating Constant Gain 
or Linear Phase 

In the filter amplifier the usual problem is to approximate an "ideal" 
amplitude response, such as that shown in Fig. 9 -1 , where the gain is con­
stant in some passband region (ui to co2) and zero outside this passband. 

In practice, with only lumped, linear 
\A^U)\ networks neither the constant gain 

in the passband nor the infinite rejec­
tion of signals outside the passband 

~ZT2 (,. , can be obtained. Therefore our prob-
_ , , , . , , , , , lem is to discover suitable gain func-
Fig. 9-1 Assumed ideal passband shape ,. , . , , . „ , , 
for a filter amplifier. t l o n s w h l c h a r e Physically realizable 

and which come satisfactorily close 
to our ideal. In other words we must try to approximate our ideal in a 
manner suitable for our application. As examples, a radar intermediate-
frequency amplifier does not usually require extremely constant gain in the 
passband, nor does it have particularly stringent requirements on the out-
of-band attenuation; conversely an amplifier for telephone repeater service 
must have extremely constant gain in the passband and possibly very high 
attenuation out of the passband to remove signals at other carrier fre­
quencies. 

Notice that a cascade of identical single-tuned stages provides a crude 
approximation to constant gain. If we consider the bandpass of Fig. 9-1 
moved down to zero frequency, as shown in Fig. 9-2, we can compare the 
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gain with that given in normalized form by Eq. (7-12) and plotted in 
Fig. 7-5. 

(Note that such gain functions are always symmetrical about the origin.) 
Equation (7-12) is not a very good function, either from the standpoint of 
the shape of the response curve approximating Fig. 9-1 (cf. Fig. 7-5) or 
from the standpoint of conservation of gain-bandwidth. Two gain func­
tions will be presented which are better in both respects and which can be 

\A(x )l 
Approximation by a single-tuned 

1 ' 

stage, \A\ = lftl+x2 

- ' i ' 
- 1 0 + 1 x—*-

Fig. 9-2 Ideal of Fig. 9-1 and its approximation by one single-tuned circuit. (Passband 
centered about zero frequency.) 

realized almost as readily with cascaded single-tuned or other interstage 
networks. 

Another approximation problem of interest is the attainment of moder­
ately effective filtering, but with the principal interest a linear-phase charac­
teristic in the passband. Such a characteristic can be obtained still using 
only simple interstage networks. 9-1 Maximally Flat Gain Function.1 This function, which is also 
known as the "Butterworth" function 2 and as "approximation in the 
Taylor sense," has for its normalized magnitude, or amplitude response, the 
following form: 

VTT X 

The shape of the response curve for various values of n (the number of 
stages) is shown in Fig. 9-3. As n increases, the shape becomes more nearly 
the rectangle of Fig. 9-2 and the 3-db bandwidth remains constant. The 
function is always monotonic, i.e., decreases uniformly toward zero on 

1 V. D. Landon, Cascade Amplifiers with Maximal Flatness, RCA Rev., vol. 5, pp. 
347-362, January, 1941 (first introduced term "maximal flatness"); W. A. Lynch, The 
Role Played by Derivative Adjustment in Broadband Amplifier Design, Proc. Sym­
posium on Modern Network Synthesis, Polytechnic Institute of Brooklyn, N.Y., 1952, pp. 
193-201. 

2 S. Butterworth, On the Theory of Filter Amplifiers, Wireless Engr., vol. 7, pp. 536-
541, October, 1930. 
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either side of band center, and for the n-pole function it represents "maxi­
mal flatness" in that the maximum number of derivatives (2n — 1) are 
zero at band center. This feature can be demonstrated as follows: 

/(*) = (1 + x2n)-1A 

Expand /(x) in a power series. 
3 x 4 " 

F(X) = L - )&»* + - — . -

4 2! 

(9-2) 

(9-3) 

Compare Eq. (9-3) with the corresponding Taylor (Maclaurin) series for 
fix). 

t2n-l(0)x2n-1 ^f2n(0)x2n 

f(x) = / ( 0 ) + f ( 0 ) x + / " ( 0 ) * - + • • • + — — 
2! (2n 1)! (2n)! 

1.0 These terms missing 
in Eq. (9-3); hence 

f (0) = 0 
/ " (0) = 0 

This term and 
higher even-order 
terms are present 
in Eq. (9-3) 

F"-\0) = 0 

(9-4) 

Thus the first 2n — 1 derivatives are zero at x = 0 for the function 
+ x 2". Remember that x = 0 corresponds to / = / 0 , the frequency 

of maximum gain in the bandpass-amplifier case. 
The selectivity ratio of the maximally flat response is given in the follow­

ing equation, which is seen to be similar to Eq. (7-20) for cascaded identical 
single-tuned stages, but smaller for a given n, hence superior. 

Selectivity ratio îoe - iy/2n (577) 

l/n 
(9-5) 

-2 - 1 + 1 + 2 x— 

Fig. 9-3 Approximation of ideal by the maximally flat gain function. 
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CO 

Since we are concerned only with amplitude, it is convenient to work with 
a function in which phase is absent. As mentioned in the previous chapter 
(see Fig. 8-11) in the discussion of image poles, a pure amplitude function 
is produced by taking A (p) A ( —p); in terms of the unknown pole locations 
Pi and p 2 ( = Pi) this is 

1 
A(p)A(-p) = 

(P ~ Pi)(P - Pi)(-P - P i ) ( ~ P - Pi) 

= \A(.p)\LJA (9-7) 

where Pi = ci + jo>i 

Pi = *i — jwi = P2 

For p = ico 

\A(p)\2-*\A(o,)\2 = — f r o m Eq. (9-6) (9-8) 
1 + CO 

|A(p)| 2-+ \A(u)\2 = 
(o-i2 + cox 2) 2 + 2(<r, 2 - co!2)co2 + co4 

from Eq. (9-7) (9-9) 

By comparison of Eqs. (9-8) and (9-9), i.e., equating the coefficients of the 
two equations, it is possible to solve for o-\ and wj. 

a 2 + coi2 = 1 (9-10) 

" 1 - C O ! 2 = 0 (9-11) 

cri = ± 0 . 7 0 7 

(9-12) 
coi = ± 0 . 7 0 7 

Thus the four poles of the amplitude function lie on a unit circle in the p 

Now the question is: Where does one locate the poles in the p plane to 
give this maximally flat amplitude response for p = jco? Let us take a 
specific case and then present the general situation. Suppose that we take 
a two-pole case, to be designed for a lowpass response; i.e., the frequency of 
maximum gain and at which the maximum number of derivatives should 
vanish is co = 0. Thus n = 2, and the desired amplitude response will be 
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plane, as shown in Fig. 9-4. The result can be stated in terms of the pole 
locations having the four values of yV — 1. 

In more general terms we may solve the problem for any value of n. 
Using Eq. (9-1), we may rewrite it in terms of the frequency variable p. 

, 1 1 
\A(i(j}) | = — = — since p - j a 
1 1 + co2" 1 + (p/j)2n 

= A(p)A(-p) = , _ , 2 n (9-13) (-D" 
( - l ) n + p 2 

The roots of Eq. (9-13) are then 

pi = [_(_l)»]l/2» = ( _ ^+1)1/2 , . = _l(n+l)/2RE ( 9 _ 1 4 ) 

Hence the poles of the gain equation always lie on the unit circle at the 
2n roots of — l n + 1 . Specific examples are 

n = 1 pi, p2 = ± 1 

n = 2 P l , p2 = ± 1 / 4 5 ° p 3 , p 4 = ± l / - 4 5 ° 

n - 3 pi, P2 = ±1 /60 ° p 3 , p 4 = ± l / - 6 0 ° p 5 , p 6 = ± 1 
Interpreting our result now in terms of the potential analogy, we would 

say that positive line charges piercing the page at the pole locations in­
dicated in Fig. 9-4 will yield a maximally flat potential variation along the 
jco axis. We know that the requirements on network functions prohibit the 
poles in the right half plane, but the potential analogy assures us that we 
can discard them and still have a maximally flat function. The symmetry 
about the j u axis indicates that, as far as potential along the jcc axis is con­
cerned, the left- and right-hand sets of poles provide the same potential 
variation. Thus removing one set simply divides the potential by a factor 

of 2, or gives the square root of t« A(joi)A(-jw), hence |A(co)|. The 
70.7 per cent or 3-db band edges are 

\~Pi always x = ± 1 , regardless of n [see 
\ Eq. (9-1)]. Hence the diameter of the 
^ X- circle is the bandwidth (heavy line). 
/ + 1 The shape of the actual amplitude 

J response for various values of n is 
x '_p shown in Fig. 9-5. These would be 

the actual response curves of a low-
pass amplifier using the derived pole 

Fig. 9-4 Pole positions for n = 2, locations. We now wish to learn 
maximally flat function. how to change the pole locations to 

-0.707 +./0.707,' A 
/ 

I 

\ _ v. 
-0.707 - ;O .707 N . 
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produce a bandpass amplifier. The semicircle could be translated along 
the jui axis until its center was at a point jwo, in which case the maxi­
mally flat amplitude response would be a bandpass one, centered at co0. 

- 1 0 

- 2 0 

- 3 0 

- 4 0 
0.6 0.8 1 8 1 0 

Fig. 9-5 Gain vs. frequency for maximally flat functions and various n'a. 

The bandwidth can also be varied at will by changing the size of the semi­
circle; the diameter will always be the 3-db bandwidth, and the response 
will always be maximally flat. An example is shown in Fig. 9-6. In 
terms of the single-tuned interstage networks of 
Chap. 7, the figure would represent a narrow-band 
approximation, since there are no conjugate poles 
and no zeros at the origin. Otherwise, the figure 
corresponds to three single-tuned circuits with differ­
ent center frequencies and Q. This is the foundation 
of "stagger tuning," the details of which will be 
developed in Chap. 10. 

9-2 Wideband Transformation. In obtain­
ing a maximally flat response in the bandpass case 
for large bandwidths, the simple picture of Fig. 9-6 
will not suffice. There are zeros at the origin—one F , s - 9 " 6 P o l e l o c a -
j, , . ., . , , • i . i , tions for a maximally for each circuit in the single-tuned case, for ex- flat t r i p l e i n n a r r o ; 
ample—and a set of conjugate poles (see Fig. 8-1). band. 

Pi — 

/ 
1 

1 
1 

"2 
\ 

\ 

Pz -

n = 3 \ 
\ 

Pz -
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S3X 
s plane 

s,x 

U>2 

• Passband 
Band center 
Three zeros 

In potential terms, these additional charges 
will influence the potential in the passband 
and will keep it from being maximally flat 
unless something is done. 

Something can be done, however, and it 
can be explained in several ways. One ex­
planation, which seems as satisfying as 
any, proceeds in terms of the potential 
analogy and the solving of a potential 
problem by means of conformal mapping. 
We know how to arrange a single cluster 
of positive charges (Fig. 9-4) in order to 
yield a maximally flat variation of poten­
tial along the jo> axis. Yet our problem 
for the wideband case consists in the ar­
ranging of two clusters of positive charges 
and a multiple negative charge at the co­
ordinate origin. These two situations are 
contrasted in Figs. 9-7 and 9-8; in order to 
distinguish the two problems, one has been 
labeled the s plane and the other the p 
plane. 

If somehow we could map the s plane into the p plane, our problem would 
be solved. This would involve carrying the s-plane origin out to infinity 
in the p plane, so that the influence of the negative charges would be re­
moved. Second, the two clusters of positive charges in the s plane would 
have to reduce to one, a feat to be accomplished by causing them to overlie 
each other in the p plane. 

A conformal-mapping function which accomplishes just these desired 
results is 

- • — 0)2 

Fig. 9-7 Pole locations 
wideband triple. 

for 

p = - + 03Q 

0)0 

(9-15) 

This transformation, or mapping function, can be derived, but we shall 
not attempt to do so here. Note that the transformation is a generalization 
of the change of variable used in Eq. (7-11), where both X and w are allowed 
to become complex; i.e., 

X W Wo 
= (7-11) 

y wq co 

s co0 

V — + — 
w0 s 

(9-16) 

Hence another way of looking at the transformation is that it is a simple 
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formation becomes simply 
1 

p = s + - (9-17) > ' 4 

\ 
\ 

\ 

sx 
p plane p̂" 

Fig. 9-8 Poles from Fig. 9-7 
transformed to lowpass p plane. 

Passband Band center The effect of transforming certain lines from 
the p plane into the s plane is shown in 
Fig. 9-9. Since we are interested in placing 
poles on a circle in the p plane, it is interest­
ing to see how circles are transformed to 
the s plane. Small circles in the p plane are 
almost circular in the s plane, but centered 
about ± j l . These approximate the con­
struction used in Fig. 9-6 for narrow bands. 
As the circles become larger in the p plane, 
their transformation becomes more distorted in the s plane. Note that 
the intersection of the circle or its transformation with the jcc axis defines 
the edges of the passband and that the geometric mean of the intersections 
is always unity. 

The intersection of the radial lines and a circle in Fig. 9-9 defines the pole 
positions for a certain bandwidth (determined by the diameter of the circle) 
and a certain value of n (determined by the angles of the radial lines). In 
the figure n = 3. The angle that these radial lines make with the jus axis 
is the same in the p plane and at the points ± j l in the s plane because of 
the conformality of the transformation. This again shows that Fig. 9-6 
is correct for sufficiently narrow band widths; however, as the bandwidth 
increases, the transformed radial lines bend and the narrow-band picture 
no longer holds true. 

The s plane in Fig. 9-9 is really the answer to our problem of where to 
place the singularities of our single-tuned circuits to produce an exact, 
maximally flat gain function. All we need to do is to choose the trans­
formed circle of proper diameter to give us the desired ratio of bandwidth 
to center frequency; then we read off the coordinates of the intersections of 
this transformed circle and radial lines. 

A word of caution: The transformation was developed for the single-
tuned case as an example and applies only to this case (and others where 

change of variable which takes an equation such as Eq. (8-2), which has two 
poles and one zero, and changes it into an equation with only one pole and 
no zeros. 

The transformation causes the band center in the s plane, namely, co 0 , 
to go into the origin in the p plane; and the origin in the s plane goes to in­
finity in the p plane. A more compact expression for the transformation 
results from normalizing the s plane for any prescribed co 0 by dividing the 
plane coordinates by co 0. Then the trans­
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e = 180° 

—a 
Fig. 9-9 Transformation of pole loci from the p plane to the s plane by the transforma­
tion p = s + 1/s. The heavy line in the s plane shows-the bandwidth which corresponds 
to the bandwidth (heavy line) in the p plane. Note that the heavy line in the p plane is 
twice as long as that in the s plane. 
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the ratio of the number of poles to the number of zeros at the origin is 2). 
More general forms of transformation exist which will accommodate 
double-tuned circuits, etc. These slightly modified forms will be introduced 
in Chap. 11. 

The transformation is commonly used in going from the p plane to the 
s plane since it is in the former plane that we know how to arrange the 
charges for maximal flatness. The transformation is double-valued in 
going from p to s, as may be seen by solving Eq. (9-17) for s. 

Hence each pole in p goes into two in s. Unless the pole is real in the p 
plane, conjugate pairs of poles do not result in the s plane, although we 
know that the end result must be conjugate clusters for physical realiza­
bility. We are saved by the fact that, when the whole maximally flat clus­
ter in p is transformed, the result is all right. Thus p\ in Fig. 9-8 taken 
together with p 3 produces S\ and s 3, together with their conjugates. 

This transformation can also be regarded as a lowpass-to-bandpass one. 
A realizable network function set up as a pole arrangement in the p plane 
transforms into a realizable function in the s plane, which gives a bandpass 
characteristic in the latter when it was lowpass in the former. 

A practical matter in using the transformation is that there is a numerical 
factor of 2.0 between the bandwidths in the two planes. The bandwidth 
from — r to r in the p plane becomes two passbands in the s plane each of 
bandwidth r. Thus, if (o 2 — coi)«o is desired to be 1.0 in the s plane, then 
O2 — fii must be set up as 2.0 in the p plane. 

9-3 Equal-ripple Gain Function. An alternative to the maximally 
flat approximation to constant gain in the passband is the equal-ripple 
response illustrated in Fig. 9-10. Such an amplitude response is readily 
devised. The magnitude of the ripples can be specified, although not their 

(9-18) 

i/vT+7 
Ripple, db = 20log./TT<r 

Fig. 9-10 Equal-ripple response. 
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frequency spacing. This response function turns out to be advantageous 
from three standpoints: more gain can be achieved for the same bandwidth; 
the approximation to constant gain is usually better for steady-state ap­
plications than is the maximally flat response; and the selectivity ratio 
is better. 

The analytic expression of the amplitude response of Fig. 9-10 is given 
below. It contains Chebyshev polynomials, and because of this the ap­
proximation function is sometimes called the "Chebyshev response." 

'̂ '-TT+Ww (9-I0) 

ripple (db) 
where e = ripple parameter = log — 1 (9-19a) 

Cn(x) = Chebyshev polynomial 

d(x) = x Ct(x) = 8 z 4 - 8x2 + 1 

C2(x) = 2x2 - 1 Cs(x) = l&x5 - 2Qxi + 5x 

C3(x) = 4 z 3 - 3Z Ct>(x) = 3 2 z H - 4 8 x 4 + 18x 2 - 1 

Cn+i(x) = 2xCn(x) - C„ _i(x) (9-20) 

There is also a convenient expression for the general polynomial in terms 
of trigonometric functions, 

, cos (n c o s - 1 x) for — 1 < x < + 1 
Cn(x) = I I - (9-21) cosh (n cosh x) tor \x \ > 1 

The property the Chebyshev polynomials have which is of interest to 
us is shown in Fig. 9 - 1 1 ; for x in the range of ± 1 , the maximum and mini­
mum values of Cn(x) are also ± 1 , and Cn

2(x) oscillates between 0 and 1 in 
the "approximation band" 1 < x < + 1 . Therefore inspection of Eq. 
(9-19) shows that in this band the maximum value of A(x) is 1 and the 
minimum value of A(x) is l / \ / I + e, as shown graphically in Fig. 9-10 
(for n = 5 ) . Far outside the approximation band Cn

2(x) increases like x2n. 
Therefore the gain function decreases outside the passband much as it did 
for the maximally flat case [cf. Eq. (9 -1)] . 

Since Eq. (9-19) seems to provide a very useful gain function, what we 
now need to know is where to locate the poles of the gain function to realize 
this gain function along the ju axis. From these pole locations we may 
later determine the necessary element values in the interstages. 



SEC, 3] EQUAL-RIPPLE GAIN FUNCTION 213 

The simplest gain function leading to the equal-ripple amplitude response 
is an all-pole one, with the poles situated around a semiellipse, as opposed 
to a semicircle for the maximally flat response. This is depicted in Fig. 9-12 
and was previously shown in Fig. 8-10. The actual value of the pole loca­
tions may be found by the process used to factor Eq. (9-1) and resulting in 
Eq. (9-14). 

The band between x = 1 and —1, the foci of the ellipse, corresponds to 
the bandwidth B\ in Fig. 9-10 and is the band within which the gain stays 

cosh o 

/ 
1 

1 
1 
1 

+ 1 
p plane 

I 

1 0 
— sinh a'\ 

\ 
\ 
\ 
\ 

\ 

2 

- 1 

-cosh a 

Fig. 9-11 Chebyshev polynomials. Fig. 9-12 Pole locations for an equal-
ripple gain function. 

within the ripple tolerance. On the other hand, the band between x = 
cosh a and — cosh a corresponds very closely to the 3-db bandwidth B% in 
Fig. 9-10, differing from 3 db by the amount of the ripple, which is usually 
small, say Yi db. We are actually interested in both these bandwidths, 
although designers of passive networks usually talk only about B\. The 
3-db bandwidth B2 provides a comparison with the maximally flat case 
and is also the bandwidth to be used in evaluation of noise in amplifiers. 

The parameter a is a function of the desired ripple magnitude. Qualita­
tively it can be seen, via the potential analogy, that as the minor diameter 
of the ellipse is made smaller, bringing the poles in closer to the joi axis, the 
potential variation (the "ripple") will be larger. The formal expression is 

1 , 1 
a = - sinh — 1 = 

n V e 
(9-22) 
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The expression for the location of the fcth pole is as follows: 
For n odd 

Pic — sinh ^ — a ± jk 

[CHAP. 9 

where 

For n even 

where 

k = 0, ± 1 . ± 2 , . . . , ± 

1 

/ 1 + 2/C 7R\ 
p f c = sinh [-a±j —-— - ) 

\ 2 nt 

n (n \ 
fc=...,--...,-l, 0, + 1 , . . . , + ( - - l j 

(9-23) 

It will actually be more expeditious in comparing the equal-ripple case 
with the maximally flat one—and indeed in designing for equal ripple—if 
we equalize the 3-db bandwidths in the two cases. Thus, in the maximally 

TANH a I  
R 

Fig. 9-13 Same as Fig. 9-12, except that 
the passband ( — 3 db) is from —1 to + 1 . 

+ 1 

p PLANE, n = 3 

MAXIMALLY FLAT PVPZ,P3 
EQUAL RIPPLE 

/ 

- l 

/ \ 

X-
|TANH a 
1 

\ 1 / 
\ \ / 

\ X p ; 
^ ^ ^ 4 - 1 . 0 

Fig. 9-14 Construction used in going 
from maximally flat to equal-ripple pole 
locations. 

•1.0 

flat case (Fig. 9-3) the 3-db passband extended from x = + 1 to —1. 
Hence, if we change the scale of the ellipse in Fig. 9-12 to bring its major 
diameter between + 1 and — 1, the two cases are closely comparable. This 
we do by dividing the scale of Fig. 9-12 by cosh a, giving Fig. 9-13. 

Remarkably enough, the pole locations are closely related to the maxi­
mally flat case. The imaginary components are identical, and the real com-
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ponents for the equal-ripple case are simply tanh a times the real component 
for maximally flat. This is illustrated in Fig. 9-14. 

We can now summarize the two functions, i.e., the two sets of pole loca­
tions. The maximally flat response results from placing the n poles on the 
unit circle (for a band from + 1 to —1), according to the 2n roots of 
— 1 " + 1 . For the corresponding equal-ripple case, i.e., the same 3-db 
bandwidth (almost), multiply the real components by tanh a. 

Rather than write the formulas for the 2n roots for arbitrary n, it is 
really simpler to state (and to remember) the simple geometrical procedure: 

Divide the semicircle (180°) by n, giving the angular separation of 
the poles. Lay them out on a semicircle of the desired diameter 
(determined by the bandwidth desired), starting with a half angle 
at the ja axis. 

Thus in the example above (Fig. 9-14), 180° divided by n = 3 gives 60° 
for the pole separation. The poles are laid out on the semicircle, starting 

with a half angle, namely, 30°, next to the ja axis. This gives maximal 
flatness of amplitude response. For equal ripple, just translate the poles 
horizontally toward the ja axis by multiplying the real component of the 
pole coordinates by the factor tanh a (tanh a is given in Table 10-6 as a 
function of the amount of ripple and n). 

9-4 Linear-phase Response. In some bandpass or lowpass systems, 
it may be the objective to make the amplifier have as closely as possible a 
phase shift <f> that varies linearly with frequency, or, what is equivalent, a 
phase delay d<t>/da that is constant with frequency. The amplitude re­
sponse is taken as it comes. 

The phase response is always an odd function of frequency with respect 
to band center and may look as in Fig. 9-15. The derivative, on the other 
hand, will be an even function, as in Fig. 9-16. This suggests that an ap­
proximation to perfect linear phase (which is not physically realizable over 
an infinite frequency range) would be to make the phase delay maximally 

d<b/dw 

Fig. 9-15 Typical phase function. Fig. 9-16 Typical phase-delay function. 



216 APPROXIMATION FUNCTIONS [CHAP. 9 

Pi* 
t -

Pl* 
t " . 

a 

Pi* 

0" 

O 

Fig. 9-17 Assumed pole locations of Fig. 9-18 Same as Fig. 9-17 with image 
A(p) to give maximally flat delay. zeros, A(p)/A{ — p). 

The phase response can be derived directly from Eq. (9-24), or it can be 
obtained by forming a phase function A(p)/A( — p), pictured in Fig. 9-18, 
which has twice the actual phase shift and no amplitude variation [see 
Eq. (8-56)]. Taking the latter approach, which possesses no special virtue 
here except to illustrate a broadly applicable technique, 

1 A(P) 
</>(«) = - a r g T  

2 A{-p) 
(9-25) 

A(p) 
A(-p) 

(-P ~ Pi)(-P - Pi) 
(P ~ Pi)(p ~ PI) 

WI + J(O> + UI)][<RI + j(co - CJQ] 

k l - j ( « + e»i)][fl-i - J(U - UI)] 
(9-26) 

1 W. E. Thomson, Networks with Maximally Flat Delay, Wireless Engr., vol. 29, pp. 
256-263, October, 1952, p. 309, November, 1952; Lynch, op. cit.; F. A. Muller, High-
frequency Compensation of RC Amplifiers, Proc. IRE, vol. 42, pp. 1271-1275, 
August, 1954. 

flat.1 The problem becomes one of deriving a function which expresses 
the delay curve of Fig. 9-16, in terms of the pole locations, and then solving 
for the locations necessary to make the delay curve maximally flat. The 
procedure parallels that for the maximally flat amplitude response. 

As an example, let us take once again the two-pole gain function, low-
pass, as in Fig. 9-17, for which 

MV) = ~ ^ — (9-24) 
VP ~ Pi)VP - Pi) 

Pi = O-I + JUI 
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Substituting Eq. ( 9 - 2 6 ) in Eq. ( 9 - 2 5 ) gives 

C d - f " C O l C O — 0)\ 

4>(co) = tan" 1 (- t a n - 1 • ( 9 - 2 7 ) 

Differentiating Eq. ( 9 - 2 7 ) gives the delay function 

d<t> 1 1 1 1 

+ doO / c O + C0l\ 2 ( T l /co — C0l\ 2 ( T i 
1 +br) , +br) 

i + 
2 < T l ( T l 2 + C O l 2 

co2 

a,2 + W l
2 2 ( c r ! 2 - C O ! 2 ) 2 1 

i + : — 5 ~ ^ « + 

( 9 - 2 8 ) 

( < , ! 2 + c o i 2 ) 2 ( a i 2 + c o i 2 ) 2 

Equation ( 9 - 2 8 ) is an even function in c o , as was the amplitude function of 
Eq. ( 9 - 9 ) , and can also be made maximally flat. It is expanded in a power 
series, in which the coefficients of c o 2 , c o 4 , etc., correspond to the derivatives 
at c o = 0 . Equating as many of these to zero as is possible yields maximal 
flatness. Expanding Eq. ( 9 - 2 8 ) in a power series gives a coefficient of the 
c o 2 term which is the difference between the numerator and denominator 
coefficients of c o 2 . Equating this difference to zero gives 

1 2 ( < n 2 - C O ! 2 ) 

( 9 - 2 9 ) 

C ! 2 + C O ! 2 ( O - ! 2 + C O ! 2 ) 2 

<J\ = 3 c O l 2 

( n = ± V 3 « i ( 9 - 3 0 ) 

No further coefficients can be made zero, but notice that three are zero—not 
only c o 2 , but also c o and c o 3 because of the function being an even one. Thus, 
as in the amplitude response, three derivatives are zero for a two-pole func­
tion, or 2n — 1 derivatives for an n-pole function. 

Also notice that Eq. ( 9 - 3 0 ) differs from Eq. ( 9 - 1 2 ) , which dictates that 
< 7 i = c o i for maximally flat amplitude. It is of interest to complete the 
comparison by setting the amplitude bandwidths equal in the two cases. 
For Eq. ( 9 - 1 2 ) the bandwidth is 2 . 0 ; so we can adjust the flat-delay func­
tion to have this amplitude bandwidth. To do this, we arbitrarily let 
c o ! = 1 in Eq. ( 9 - 2 4 ) , then ax = y/Z, and by substitution we find that 
Eq. ( 9 - 2 4 ) becomes 

1 
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The magnitude of Eq. (9-31) is 

IA (»|2 = -
1 

+ 4CO2 + 16 

[CHAP. 9 

(9-32) 

At co = 0, | A (ico) |2 = Y\%; therefore the band-edge frequencies are found 
by solving for co;, in the equation 

co h
4 + 4CO 6

2 + 16 = 32 

or coh = ± 1 . 5 7 (9-33) 

Thus the proper pole locations to give both the linear-phase response and a 

T -
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Fig. 9-19 Maximally linear-phase pole locations. (Band normalized to ± 1 . ) Circles 
indicate order (n) of approximation. 
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3-db bandwidth of 2.0 (band from —1 to +1 ) are 

V 3 
( 7 i = — - ±1.102 

1.57 
(9-34) 

± 1 
o>i = = ±0.636 

1.57 

These values contrast with those for maximally flat amplitude response 
giving the same 3-db bandwidth, which are, from Eq. (9-12), = W l = 
±0.707. 

For the general case of n poles, things are not so simple as they were for 
maximally flat amplitude. The poles do not remain on the same contour 
for all n, nor do they lie on any simple contour for a given n. Moreover, 
the computational difficulty increases rapidly for large values of n. A few 
results from Thomson's paper are sketched in Fig. 9-19, the numerals 
indicating the poles corresponding to a given value of n. 

Equal-ripple approximations to linear-phase or constant delay have re­
ceived study, but no compilation of generally useful results has yet ap­
peared. 

9 - 5 Arbitrary Responses. The formal examples of amplitude or 
phase responses which have been presented are by no means the only useful 
ones. In some respects they are too circumscribed by theoretical limita­
tions. For instance, it is not possible to get both maximally flat amplitude 
and maximally flat delay in a simple amplifier structure; yet Bradley 1 

has shown that one can devise a response which, from a practical stand­
point, is very flat in both amplitude and delay and which has good selec­
tivity as well. 

Other situations call for amplitude or phase response having rather 
arbitrary shapes. For all such responses other than the idealized ones 
described in this chapter, it is probable that the most useful approximation 
procedure is experimentation with one or more of the analogies presented 
in Chap. 8. 

P R O B L E M S 

9-la. Find the pole positions in the lowpass plane (p plane) for a three-pole, maximally 
flat amplifier with a bandwidth extending from IL = —0.3 to n = +0.3 . 

6. What fractional bandwidth (ratio of bandwidth to center frequency) will result if 
the pole positions in (a) are transformed to the bandpass plane with the transformation 
V = * + l/s? 

c. Find the pole locations in the s plane, using the transformation in (b). If the band 
center were desired at 50 Mc instead of 1.0, what would you do with these pole positions? 

1 W. E. Bradley, Design of a Simple Band-pass Amplifier with Approximate Ideal 
Frequency Characteristics, TRANS. IRE, vol. PGCT-2, pp. 30-38, December, 1953. 
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9-2. Find the locus in the s plane of a point moving from — oo in toward the origin 
along the 2 axis in the p plane. What special feature occurs in the s plane at the trans­
formation of the point p = — 2? 

9-3. Assume a gain function of the form 

- p> + lp + l 
We wish to make this function maximally flat by properly choosing the constant a. 
To do this, form the function \A(ja) \ ". This function may then be differentiated with 
respect to w and as many derivatives as possible set equal to zero. From this the value 
of a may be determined. Show that this value of a gives a pair of poles in the same 
position as specified by Eq. (9-12). 

9-4. The series-peaked transistor stage of Chap. 4 has two complex poles and no 
zeros in its transfer function. Therefore these poles may be placed in such a manner as to 
obtain a maximally flat gain function. (Note that this procedure will lead to a transient 
response with considerable overshoot.) 

Using the approximations in Sec. 4-7, find the relations between the stage element 
values to produce a maximally fiat stage with bandwidth w0. 

9-5. In the p plane, the poles of a maximally flat gain function lie on a circle. Sketch 
in the s plane the transformed circles and pole locations for n = 3 for each of the two 
conditions Br Br 

— = 0.3 — = 1.5 
wo wo 

Br is the 3-db bandwidth in the s plane, and wo is the center frequency. Check your 
result with the curves in Fig. 9-9. 

9-6. Find pole locations in the p plane for equal-ripple responses of unit bandwidth 
having \i and 1 db ripple. Do this for both n = 2 and n = 3. Find the ratio of the 
gain at the origin for each case to the gain at the origin for an equal number of poles 
arranged in a maximally flat manner. Assume that the gain depends upon the distances 
from the poles to the origin only. 

9-7. Prove that, in general, the intersections of the circles and the jil axis in the 
p plane when transformed to the s plane display geometric symmetry about the band-
center frequency. 

9-8. The pentode shunt-peaked stage can also be made maximally flat by the proper 
choice of the parameter m (see Sec. 4-3 and Fig. 4-2). Form a magnitude function A(p)A{—p), and let p = ja>. Then equate as many derivatives of this function to zero at 
w = 0 as possible. This procedure will determine the value of m, which should be 
m = 0.414. What angle does a line connecting the origin to a pole make with the a axis 
for this value of TO? 



10 
Stagger Tuning 

The term "stagger tuning" refers to an amplifier comprising several 
stages in cascade, in which the stages are not tuned identically to the same 
frequency but are "staggered" at frequencies above and below the desired 
center frequency of the complete amplifier. Not only are the tunings of 
the individual stages nonidentical, but their bandwidths are also dif­
ferent. 

The objectives of stagger tuning are twofold: (1) a greater gain-band­
width factor is generally achieved than with a cascade of identical stages, 
and (2) a prescribed amplitude response, such as maximally flat or equal 
ripple, can be synthesized, either of which is more desirable for filtering than 
is the response of identical stages. 

Historically, the advantages and possibilities of stagger tuning were ap­
parent to a few persons several years before it became a widely used tech­
nique. The desirability of synthesizing a complicated gain function from 
simple networks in a multistage amplifier was first advocated by Butter­
worth in 1930,1 although the gain-bandwidth advantage did not become 
apparent until Schienemann's paper in 1939.2 The latter paper was ap­
parently not utilized by anyone in this country until about 1943, although 
Landon in the meantime had published a paper having to do with the 
maximally flat response function.3 To Henry Wallman belongs the credit 

1 S. Butterworth, On the Theory of Filter Amplifiers, Wireless Engr., vol. 7, pp. 
536-541, October, 1930. 

2 R. Schienemann, Tragerfrequenzverstarker groszer Bandbreite mit gegeneinander 
verstimmten Einzelkreisen, Telegraphen Fernsprech Tech., 1939, pp. 1-7. 

3 V . D. Landon, Cascade Amplifiers with Maximal Flatness, RCA Rev., vol. 5, pp. 
347-362, 481^97, January and April, 1941. 

221 
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for first exploiting the stagger-tuning technique 1 used in connection with 
wideband intermediate-frequency amplifiers in the receiver of a radar 
system. 

Wallman's work provided usable data for synthesizing the maximally 
flat amplitude response with single-tuned amplifier stages. This was ex­
tended by Baum 2 to include the equal-ripple function and by Trautman 
and other workers to include other interstage networks.3 

The principal elements of the technique have already been described. 
In Chap. 9 there were presented the pole locations for three kinds of gain 
functions, yielding maximally flat or equal-ripple amplitude response or 
maximally flat time delay (linear phase). In Chap. 7 there were developed 
the equations for the gain function of one single-tuned amplifier stage, and 
in Chap. 8 the gain function was factored to yield the relationship between 
the poles and the element values for the single-tuned circuit. Now all that 
remains is to assign a single-tuned stage for each pole of the desired over-all 
gain function. Then from the pole locations we shall be able to determine 
the stage element values, expressed usually in terms of the tuning (center 
frequency &>n) and the bandwidth (or Q). 

We shall follow Wallman's convention of distinguishing three cases, 
depending upon the relationship of bandwidth to center frequency. The 
first case is narrow-band, where the bandwidth is less than 5 per cent of the 
center frequency. At the other extreme is the wideband case, where the 
bandwidth is 30 per cent or more of center frequency. In between is what 
Wallman calls the "asymptotic," or intermediate, case. 

10-1 The Narrow-band Case. The narrow-band case gives arith­
metic symmetry of the amplitude response and is the case where the zeros 
at the origin and the conjugate poles are neglected. The single pole has 
the coordinates shown in Fig. 10-1, which depicts the p plane normalized 
by 2ir to give band widths in cycles per second instead of radians per second. 
Notice that the horizontal coordinate of the pole is fo/2Q, which is also 
B/2, where B is the 3-db bandwidth of the single-tuned circuit as given in 

1 H . Wallman, Stagger Tuned I-F Amplifiers, M.I.T. RADIATION LAB. REPT. 524, 
February, 1944; the essential content of this report appears as chap. 4 in G. E. Valley, 
Jr., and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, M.I.T. Radiation 
Laboratory Series), McGraw-Hill Book Company, Inc., New York, 1948. 

2 R. F. Baum, Design of Broad-band I-F Amplifiers, J. APPL. PHYS., vol. 17, pp. 
519-529, 921-930, 1946. 

3 D. L. Trautman, Jr., Maximally Flat Amplifiers of Arbitrary Bandwidth and Coup­
ling, ELECTRONICS RESEARCH LAB., STANFORD, TECH. REPT. 41, Feb. 1, 1952; J. S. Eddy, Stagger 
Tuned Amplifiers with Double-tuned Interstages, ELECTRONICS RESEARCH LAB., STANFORD, 
TECH. REPT. 29, January, 1951; D. L. Trautman and J. A. Aseltine, Equal-ripple Band­
pass Amplifiers, UNIV. CALIF., LOS ANGELES, DEPT. ENG. REPT. 51-9, August, 1951; M. M. 
McWhorter, The Design, Physical Realization and Transient Response of Double-tuned 
Amplifiers of Arbitrary Bandwidth, ELECTRONICS RESEARCH LAB., STANFORD, TECH. REPT. 58, 
February, 1953. 
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l 

\ 

|w/27i 

B=f0/Q=l/2*RC 

fo 

Eq. (7-5). Hence a semicircle drawn 
through the pole and centered on f0 

gives the band edges for the single-
tuned circuit. Do not confuse this 
geometrical trick with the semicir­
cular construction required for place­
ment of several poles in order to yield 
maximal flatness. 

Now, for stagger tuning in the nar­
row-band case, one merely draws the 
semicircle, as in Fig. 10-2, of diameter 
B corresponding to the desired over-all 
bandwidth, and places the desired 
number of poles on the semicircle, one 
for each single-tuned stage. From the pole coordinates one then computes 
for each stage the individual/0i and B\ = /oi/Qi, as in Fig. 10-1. The re­
sults can be drawn up in a simple table which can be used without having to 
repeat the geometrical construction for each new case. Such a table is 
given in Table 10-1, with values from Valley and Wallman.1 The table is 

Fig. 10-1 Approximate pole location 
tor a narrow-band single-tuned stage. 

/ 

i-4 \ 

\ e 
0 - 1 8 0 7 ^ 

2ir 

B 
4 zeros 

f W / 2 J I 

<r/2rr 

-fo 

Fig. 10-2 Pole cluster about band center for a maximally fiat amplifier and the cor­
responding situation including all poles and zeros. (Narrow band.) 

given only through the staggered quadruple, although obviously it could 
be extended as far as desired. Practically, however, the pairs and triples 
are the most widely used. Higher orders require stages with high Q (poles 
near the j<a axis), sometimes higher than can be obtained in the presence of 

1 Op. ctl., p. 180. 
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1. Staggered pair (N = 2) 
Two stages tuned to FO ± 0.35B, each having a 
bandwidth 0.707B 

2. Staggered triple (N = 3) 
One stage tuned to FO, with bandwidth B 
Two stages tuned to FO ± 0.43B, with bandwidth 0.50B 

3. Staggered quadruple (N = 4) 
Two stages tuned to FO ± 0.46B, with bandwidth 0.38S 
Two stages tuned to FO ± 0.19B, with bandwidth 0.92B 

NOTE : FO is the center frequency of the over-all amplifier, and B is the over-all 3-db 
bandwidth. 

loading due to tube input conductance. Also, the tune-up procedure is 
lengthened, since additional signal generator frequencies must be used. 

The data in the table provide the necessary design data, and that would 
be the end of the story if electrical components always had the proper values 
of resistance, capacitance, etc. This is not the case, of course, and par­
ticularly in wideband amplifiers, where the principal capacitance is that 
due to the tube. There is substantial variation from one tube to the next, 
and hence each stage is usually made tunable over a sufficient range to 
allow for this. The inductance is readily tuned by means of a brass or 
powdered-iron "slug," or core, moved into and out of the coil. Although a 
tuning capacitance could also be added, to do so increases C per stage and 
reduces the gain-bandwidth product. 

The tuning procedure is simplicity itself. A signal generator is connected 
to the input of the amplifier and a vacuum-tube voltmeter to the output. 
If the amplifier is, say, a triple, with stages 1, 2, and 3, to be tuned to fre­
quencies/i,/ 2 , and/3, according to Table 1 0 - 1 , then the signal generator is 
first set at FX and stage 1 tuned for a maximum voltmeter reading. Next, 
stage 2 is adjusted with the signal generator set at / 2 . Finally, stage 3 is 

adjusted at frequency / 3 . The order of 
adjusting the stages is completely unim­
portant. 

Also, except for certain second-order 
effects, it is immaterial in which order 
the stages are connected. To make sure 
these effects are small, the tunings can be 
rechecked. 

10-2 The Wideband Case. The 
Fig. 10-3 Exact pole-zero loca- wideband case requires the use of the 
tions for a single-tuned stage. transformation developed in Chap. 9. 

FO FO 

Table 10-1. Narrow-band Stagger Tuning (MAXIMALLY FLAT) 
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The principal differences are that the poles in the s plane are not on a 
circle to give maximal flatness and that the radial distance from the origin 
to the pole of each single-tuned circuit represents the resonant frequency 
fo (see Fig. 10-3). Each new design problem could be worked through 
by laying out the poles on a circle in the p plane, transforming their coor­
dinates to the s plane, and then determining the stage tunings and band-
widths, as in Fig. 10-3. But for repeated design work it is more convenient 
to reduce the results of the process to formulas and curves. Two excellent 
curves are given in Valley and Wallman,1 for staggered pairs and triples. 
The corresponding formulas are given in Table 10-2 and the curves in 
Figs. 10-4 and 10-5. 

TABLE 10-2. WIDEBAND STAGGER TUNING (MAXIMALLY FLAT) 

1. Staggered pair (n = 2) 
Two stages tuned to/oa and fa/a, having the same Q 

4 + S2 - V l 6 + a4 

(-:)"+?-' 
2. Staggered triple (n = 3) 

One stage tuned to fo with bandwidth B 
Two stages tuned to/oa and/o/a, same Q 

4 + S2 - Vl6 + 4 6 2 + 5* 

NOTE : fo is the center frequency (geometric center) of the over-all amplifier. B is the 

over-all 3-db bandwidth, and 5 = B/fa­

i t is of interest to note in passing the locations of the poles in the wide­
band case for, say, the staggered triple. The center stage has the same / 0 as 
the triple; hence, its pole will always lie on a circle drawn through the point 
jfo and will be farther from the ju> axis for greater bandwidths (or on the 
a axis for 8 > 2) . The other two stages both have the same Q, and their 
center frequencies are related by the factor a ; this results in the poles for 

1 Op. cit., pp. 188, 190. 
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/ 
/ 

' \ 

\ 

u/2v these two stages lying on the same radial 
line through the origin. The complete 
picture (omitting the lower half plane) is 
shown in Fig. 10-6. 

10-3 The Asymptotic Case. The 
formulas of Table 10-2 are cumbersome 
to use and hence should be avoided un­
less the bandwidth is really large. An 
intermediate region of B/f0 can be de­
fined in which the calculation can be 
simplified and yet an accuracy of better 
than 1 per cent can be retained. If B/f0 

is less than 0 .3, the values of a and Q in 
Table 10-2 approach very closely an 
asymptotic limit; this is indeed called the 

"asymptotic case" by Wallman. For example, in the staggered pair, 
a approaches 1 + 0.355, and Q approaches 1.4145. These formulas for the 
intermediate case are given in Table 10-3. It will be noted from a com­
parison of the narrow-band and intermediate cases (Tables 10-1 and 

Table 10-3. Intermediate Bandwidth (Maximally Flat) 

5 = B/f0 ^ 0.05 to 0.3 (or 0 to 0.3) 

1. Staggered pair (n = 2) 
Two stages tuned to foa and fa/a, same Q 

a/2it 

Fig. 10-6 Pole positions for maxi­
mally flat triple in the wideband 
case (lower half plane omitted). 
Compare with Fig. 9-9. 

Q 
1.414 

a = 1 + 0.355 

2. Staggered triple (n — 3) 
One stage tuned to fo with bandwidth B 
Two stages tuned to foa and/o/a, same Q 

2.0 
Q = a = 1 + 0.4335 

3. Staggered quadruple (n = 4) 
Two stages tuned to /oai and /o/ai, same Qi 

2.63 
Qi = «i = 1 + 0.465 

S 

Two stages tuned to /oa2 and /o/<*2, same Q% 

1.088 
a2 = 1 + 0.195 

NOTE: fo is the center frequency of the over-all amplifier, and B is the over-all 3-db 
bandwidth. 
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10-3, respectively) that the tuning of the low stages is the same, but not 
that of the high stages. In the narrow-band case the bandwidths of cor­
responding high and low stages are the same, whereas in the asymptotic 
case the Q's are the same. Thus the equations of Table 10-3 display the 
correct geometric symmetry about / 0 . The differences, though, are quite 
small. Because the intermediate-bandwidth formulas are so easy to use, 
they may well be used for a narrow-band example as well. 

All three of the preceding tables give the data for the maximally flat 
amplitude response. To obtain the equal-ripple response in the narrow­
band case, it is necessary only to multiply the bandwidth of each stage by 
the factor tanh a, as defined in Chap. 9. For values of tanh a see Table 10-6. 

For the wideband and intermediate cases, the equal-ripple response can 
be derived from the transformation p = s + 1/s. The resulting formulas 
will be found in Table 10-4. 

Table 10-4. Wideband Stagger Tuning (Equal Ripple) 

Ripple factor tanh a as in Eq. (9-18), Fig. 9-8, and Table 10-6 

B desired over-all 3-db bandwidth 
fo desired center frequency 

1. Staggered pair (n = 2) 
Two stages tuned to/oa and/o/a, having same Q 

4 + R'1 - V(R2 - 4) 2 + 8S2 

8 

R2 = - (1 + tanh2 a) 

2. Staggered triple (n = 3) 
One stage tuned to /o with Q = 1/(8 tanh a) 
Two stages tuned to foa and fo/a, same Q 

4 + R2 - V(R2 - 4 ) 2 + 1282 

8 

R2 = - (3 + tanh2 a ) 4 

N O T E : These formulas reduce to those of Table 10-2 (maximally flat) when the ripple 
is reduced to zero, making tanh a = 1. Thus this table includes not only equal 
ripple but also maximally flat as a special case. 



230 STAGGER TUNING [CHAP. 10 

10-4 Cascades of Ti-uples. A stagger-tuned cascade of n stages is 
called an "n-uple," e.g., a quadruple for n — 4, but an n-uple where n is 
arbitrary. 

Now, an n-uple can be designed according to the principles which have 
been set forth in the preceding pages for as many stages as desired. For 
practical reasons, however, the order n of the n-uples usually is not higher 
than 3 or 4 (occasionally perhaps as high as 6). Hence, if more than three 
or four stages are required to obtain the required over-all gain, it is cus­
tomary to cascade several n-uples. It turns out, of course, that, when 
identical triples are cascaded, the bandwidth shrinks. The situation for 
cascaded identical single-tuned stages was given in Eq. (7-15) . For the 
stagger-tuned case the gain magnitude in terms of the normalized frequency 
variable x is for one n-uple, 

] A n ( x ) l = v T T ^ s (1(M) 

The gain for m such n-uples cascaded is 

Setting the over-all gain at 1/y/2 and solving for x gives the half bandwidth 
of the resulting amplifier, and also the bandwidth shrinkage factor since 
the half bandwidth for one n-uple is unity. 

Bandwidth of m staggered n-uples ,. , .„ 

55 1— = (2
llm - l ) l l 2 n (10-3) 

Bandwidth of one staggered n-uple 
Implicit in this equation is the fact that the higher the order n the slower 
will be the bandwidth shrinkage as n-uples are connected in cascade. 

10-5 Gain-Bandwidth Factor. This useful figure of merit was defined 
in Chap. 7 ; it provides a means of comparing the amount of gain-band­
width realizable from tubes having the same gm/C when used with various 
interstages. 

For one single-tuned stage, the gain-bandwidth factor was shown to be, 
by definition, equal to unity. For a cascade of m identical single-tuned 
stages, the gain-bandwidth factor is 

GBF = V 2 1 / m - 1 (7-15) 

This is the same as Eq. (10-3) with n = 1. Thus the gain-bandwidth factor 
diminishes as the number of stages increases. 
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In marked contrast to this, the gain-bandwidth factor of n single-tuned 
stages arranged in a staggered w-uple (maximally flat) is always 1.00, re­
gardless of n. Thus, stages can be added indefinitely without loss of gain-
bandwidth factor. The proof that the gain-bandwidth factor is always 
unity in an n-uple is simple for the narrow-band case. Here the gain of 
each stage at band center f0 is the same regardless of n because the distance 
from fo to the pole characterizing one stage is the same as the distance to 
the pole of any other stage because of the circular pole locus. By use of 
Eq. (8 -6) , the gain of any stage at midband is 

. . . . . , 9m I 9m 1 

2C \JOJ — pi\ 2C Br/2 

In Eq. (10-4) B r is the over-all bandwidth in radians per second. Substitut­
ing in the definition of GBF [Eq. (7-16)] , we obtain 

G B F t i A ' Y " B ' 
9m/C 

/_9mY 

\cbJ —[7, = 1 ( 1 0 - 5 ) 

The corresponding proof that the GBF is unity in the wideband case is 
complicated by the fact that all stages do not then have the same gain at 
band center. The easiest way of proceeding is to consider gain in the low-
pass plane (the p plane) where the poles are equidistant from the band 
center (co = 0 ) . Since the transformation from the p to the s plane is con-
formal, the gain produced by a set of singularities in the p plane is the same 
as that produced by the corresponding set in the s plane. We have learned, 
however, that a complex pole in the p plane does not transform into a con­
jugate pair in the s plane; consequently we must consider a conjugate pair 
of poles in the p plane which transform into two conjugate pairs in the s 
plane (or two single-tuned stages). The gain of such a pair of stages will be 
equal to that of any other pair of stages with poles lying on the same circle 
in the p plane. Also, the pair of stages will have the square of the gain of 
a stage whose pole lies on the intersection of the a axis and the circle. 
Therefore, in the wideband case the geometric mean of the gain of pairs of 
stages having the same Q's will equal the gain of a centered stage. Since 
the geometric mean of the over-all gain is used in the equation for deter­
mining the GBF, the latter will again be unity. To illustrate the situation 
described, the gains (in decibels) of the three stages of a relatively wideband 
triple (<5 = 2) are plotted on a logarithmic frequency scale in Fig. 10-7. 
(The arithmetric symmetry of the curves on the logarithmic frequency 
scale indicates geometric symmetry on a linear frequency scale.) Note that 
the gain (decibels) of the low- and high-frequency stages is equally above 
and below the mid-frequency stage at band center. 
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When it becomes necessary to cascade staggered n-uples, the gain-band­
width factor is given by Eq. (10-3). The numerical values which result 
from these formulas are both of interest and of practical importance. Table 
10-5 shows the gain-bandwidth factors obtained with N tubes (N = mn) 
from N = 1 to 9 used in various combinations. 

To use the table, refer back to Eq. (7-16), where the gain-bandwidth 
factor was denned. As an example, suppose that one wishes to compare 
nine tubes used as identical stages or as three staggered triples. The ratio 
of over-all bandwidth obtainable for the same over-all gain would be 

0.80 
= 2.86 

0.28 

On the other hand, the ratio of gain obtainable for the same over-all band­
width is 

/0.80\ 9 

( = 1.3 X 104 

\0.28/ 
Comparison of the gains for equal bandwidths emphasizes the fact that an 
amplifier made up of a large number of identical stages is indeed an in-
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efficient device. The contrast for the case of equal gain is not so startling, 
but the same phenomenon is at work. 

The gain-bandwidth factor for an n-uple adjusted for an equal-ripple 
type of response is greater than unity because for the same bandwidth the 
poles are located closer to the ja axis than in the maximally flat case. Since 

Table 10-5. Gain-Bandwidth Factors 

No. of 
tubes, N ( = mn) 

Identical 
stages 

V 2 l , n — 1 

Cascaded n-uples 
(2l/« _ l ) V 2 n 

No. of 
tubes, N ( = mn) 

Identical 
stages 

V 2 l , n — 1 
m pairs 

m triples TO quadruples 

No. of 
tubes, N ( = mn) 

Identical 
stages 

V 2 l , n — 1 
- y / 2 1 / m — 1 \/2llm - 1 V / 2 1 / m - 1 

1 1.00 
2 0.64 1.00 

(m - 1) 

CO 0.51 1.00 
(TO = 1) 

4 0.44 0.80 1.00 
(m = 2) (m = 1) 

5 0.39 
6 0.35 0.71 0.86 

(m = 3) (TO = 2) 
7 0.32 
8 0.30 0.66 0.90 

(TO = 4) (TO = 2) 
9 0.28 0.80 

(TO = 3) 

the poles are closer to the ja axis for larger amounts of ripple, we would ex­
pect a larger GBF, as is shown in Table 10-6. As an example, the gain of a 
quadruple with 0.2 db ripple is about 10 db greater than the corresponding 
maximally flat quadruple. 

The GBF for combinations of equal-ripple n-uples can be approximated 
by taking the GBF for the combination from Table 10-5 and multiplying 
it by the GBF for the equal-ripple n-uple (Table 10-6). For example, the 
GBF for three cascaded pairs with 0.1 db ripple per pair is (1.07) (0.71) = 
0.76; the over-all ripple would be (3) (0.1) = 0.3 db. 

10-6 Practical Design Information. The attempt in this discussion 
has been to provide the underlying theory and some physical intuition in 
the matter of how stagger tuning works. Active workers in a field such as 
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Table 10-6. Equal-ripple Function 

Values of tanh a and gain-bandwidth factor as a function 
of the ripple in decibels, for pairs, triples, and quadruples 

Number of tubes, n 

Ripple, db n = 2 (pairs) n = 3 (triples) n = 4 (quadruples) Ripple, db 

tanh a GBF tanh a GBF tanh a GBF 

0.01 0.953 1.025 0.846 1.080 0.731 1.155 
0.03 0.920 1.040 0.786 1.120 0.662 1.202 
0.05 0.898 1.050 0.750 1.140 0.623 1.230 
0.07 0.880 1.060 0.725 1.160 0.597 1.251 
0.10 0.859 1.070 0.696 1.182 0.567 1.275 
0.20 0.806 1.100 0.631 1.230 0.505 1.325 
0.30 0.767 1.120 0.588 1.265 0.467 1.355 
0.40 0.736 1.135 0.556 1.290 0.439 1.380 
0.50 0.709 1.150 0.524 1.320 0.416 1.410 

this inevitably produce helpful graphs, tables, nomograms, and the like, to 
shorten the time required for numerical designs.1 

Design Example. It is instructive to carry through an example, espe­
cially to show how certain graphical aids can be devised and put to use. 

Suppose that in a given system there is needed a bandpass amplifier to 
provide a gain (voltage amplification) of 60 db with a bandwidth of 7 Mc. 
The center frequency is of no consequence in the initial phases of the design 
procedure and in fact is needed only when one comes to calculate the inter­
stage inductances. Also assume that system considerations, such as reduc­
ing the number of tube types, limit the available tubes to the 6AK5 and 
6AH6. Measurements on the wiring situation in which the tubes will be 

1 R . C. Wittenberg, Broad-banding by Stagger Tuning, Electronics, vol. 25, pp. 
118-121, February, 1952; E. R. Jenkins, Stagger Gain Calculator, Tele-Tech, vol. 9, 
p. 29, April, 1950; B. A. Wightman, A Graphical Method for Determining the Number 
and Order (N) of iV-uples in Stagger Tuned Amplifier Design, Natl. Research Council 
Can. Rept. ERA-212, December, 1951. 

The basic work of Wallman is usually quite adequate for the maximally flat case; in 
particular, chaps. 4 and 8 in the book "Vacuum Tube Amplifiers" (Valley and Wallman, 
op. cit.) contain many practical details. For the equal-ripple case, the papers by Baum 
(op. cit.) and by Wittenberg may prove useful. 
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mounted show that a total interstage wiring capacitance of 5 pf can be ex­
pected. 

The design questions which we shall answer here are: (1) Which tube 
should be used? (2) Which combinations of single-tuned stages will meet 
the gain-bandwidth requirements? (3) Which will require the fewest tubes? 
(4) Which will give the best selectivity ratio? 

Choice of Tube. Shown in Fig. 10-8 is a plot of Eq. (7-7) for a number of 
currently used tubes, including the two allowable types for the example at 

3 4 5 6 7 8 9 10 

g , ma/volt or millimhos 
15 20 

Fig. 10-8 Chart for tube selection. (Each tube should be displaced vertically by the 
amount of the interstage wiring capacity.) 

hand. The points on the graph do not include wiring capacitance, how­
ever; so each of the two must be translated upward by 5 pf. Because of 
the logarithmic capacitance scale, the 6AH6 is displaced the least and hence 
proves to be the best choice. The actual interstage capacitance is further 
increased by the change in input capacitance occurring when plate current 
flows in the tube, as noted in Sec. 2-5. The output capacitance is for all 
practical purposes unchanged by varying the operating point. Table 10-7 
gives the tube-manual value of C-m, together with the measured value with 
the tube cold (heater off) and the measured value at normal plate current. 
(The values are measured on a small number of tubes.) Note that the 
tube-manual values are in general 30 to 50 per cent too low. Thus the ac­
tual gain-bandwidth for the 6AH6 with this wiring capacitance is 72 Mc. 

Choice of Stagger Combinations. The gain-bandwidth performance can 
be displayed conveniently in the graphical presentation devised by Wight-
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Table 10-7. Comparison of Cold Input Capacitance and the 
Normal Operating Capacitance for Typical Tubes 

Measured Ci„ Measured Ci n % 
i uoe (cold) (at normal It) change 

5654 4.1 (4) 5.3 + 2 9 
(6AK5) 

6AH6V 9.8 (10) 12.8 + 3 1 
6AU6 5.8 (5.5) 8.7 + 5 0 
6EW6 9.9 (10) 14.2 + 4 3 
6BA6 5.8 (5.5) 7.7 + 3 3 
6AG5 6.5 (6.6) 8.5 +31 
E180F (7.5) (11.1) + 4 8 

(6688) 

NOTES: Values in parentheses are from tube manual. 
The measured values shown were obtained at 1 Mc and do not represent the average 

of a large number of tubes. 

man, as shown in Fig. 10-9. Note the similarity of construction to Fig. 
6-16. The curves are a plot of the gain-bandwidth factor relationships 
[see Eq. (7-16)], 

B 
20 log An = db gain = -20re log + 20n log GBF (10-6) 

gm/2*C 
The "normalized bandwidth" is obtained by taking the actual over-all 
bandwidth required of the amplifier (7 Mc, in our example) and dividing it 
by the gm/2irC of the tube, which including wiring capacitance equals 
72 Mc. Thus, for the example at hand, the normalized bandwidth is 
J^72) o r about 0.097. All curves in Fig. 10-9 which cross the vertical line 
through 0.097 at a level of 60 db or greater will meet the requirements. 
The lowest of these are: 

5 X 1 (five identical stages) 
1 X 3 (one staggered triple; three tubes) 
2 X 2 (two staggered pairs; four tubes) 
1 X 4 (one staggered quadruple; four tubes) 

Fewest Tubes. It is evident that the staggered triple requires the fewest 
tubes. This may not be the practical answer, however. System require­
ments may favor the better selectivity ratio of the 2 X 2 or 1 X 4 i n spite 
of the extra tube (see below). Also, practical consideration of the variability 
of tube characteristics may call for a margin of safety, thus favoring the 
other combinations. 
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Normalized bandwidth, B/(gm/2irC) 

Fig. 10-9 Gain-bandwidth chart for single-tuned stages, (n-uples are maximally flat.) 
[From B. A. Wightman, A Graphical Method for Determining the Number and Order (n) 
of n-uples in Stagger Tuned Amplifier Design, Natl. Research Council Can., Rept. ERA-212, 
December, 1951.] 

Selectivity Ratio. The selectivity ratio for a cascade of identical stages has 
already been given in Eq. (7-20) and for the maximally flat function 
corresponding to a single n-uple in Eq. (9-5). For a cascade of m identical 
n-uples, the selectivity ratio is 

" ( 1 0 6 ) 1 / M 

Selectivity ratio = 
1 

4 1 / ™ _ 1 

l / 2 « 
(10-7) 
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1.5 1 1 1 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 
re 

Fig. 10-10 Selectivity ratio of stagger-tuned stages. 

It is instructive to display these relationships graphically, as in Fig. 10-10, 
which permits one to see quickly the relative merits of various combinations. 

For the example at hand, the selectivity ratios for the three alternatives 

m X n Selectivity ratio 

1 X 3 8.4 
5 X 1 7.0 
2 X 2 5.7 
1 X 4 4.9 

System requirements will have to govern the choice here. It would appear 
that, in going to four tubes, one might as well use the 1 X 4 combination 
and achieve the better selectivity ratio and higher gain. Here again, how­
ever, the system situation might favor the 2 X 2 , since it has only two 
different interstage types to manufacture and to align. 

PROBLEMS 

10-1. The following questions pertain to a staggered triple composed of three cas­
caded single-tuned circuits (stages) arranged to give a maximally flat amplitude response. 
Assume that the bandwidth Br is sufficiently small compared with the center frequency 
wo so that the narrow-band approximation may be used. 
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j-«-a » 

1_ 

a. In terms of gm/C and Br, how much gain and phase shift are provided by each 
stage at wo? (Note that wo is the over-all center frequency.) 

b. What is the maximum gain of each stage, and at what frequency does it occur? 
c. What are the bandwidth and Q of each stage? 
d. Suppose that the gm of the center stage falls to one-half of its normal value. Why 

does this not result in a dip in the center of the response curve? 
e. Show that, for small fractional bandwidths, the wideband transformation becomes 

approximately p = 2(s — jwo). In terms of p, gm/C, and Br, write the gain function 
A(p) for the over-all triple. 

10-2. Derive the relationship which gives the gain-bandwidth factor of a stagger-tuned 
pair and triple for the equal-ripple case. The expression should be a function of tanh a. 
Check your expression with Table 10-6 by calculating the GBF for a ripple of 0.1 db. 

10-3. Engineer Jones (a fictitious character!) 
hears about stagger tuning and the benefits it 
produces in giving a flat passband. He decides 
to try it "on his own" and reasons that one 
should take several single-tuned stages of equal 
bandwidth and space them in frequency at equal 
intervals. He tries the scheme with three stages. ^ Ignore zeros 
Now it turns out that his choice of bandwidth ; and conjugate 
and frequency separation places the poles of the _ _ x T w ° poles 
over-all gain function as shown in Fig. P10-3. 
(Jones is, of course, blissfully unaware of this.) [i =2a (} 
He finds that his amplitude-response curve has 
a pronounced peak near the frequency of the 
center stage; so he reasons that the center stage 
has too much gain. This he corrects by reduc- Fig. P10-3 
ing the tube gm of this stage, but the solution 
does not work. Why not? By graphical means compute the gain curve that Jones 
obtained. 

10-4. This is a typical design problem which may be solved in the main by use of the 
design charts in the chapter. 

o. Suppose that the tubes available for a given amplifier are limited to the 6AK5, 
6CB6, or 6AH6. Choose the tube which will give the best gain-bandwidth product if 
the stage wiring capacitance is 5 pf. Use the chosen tube for the following parts of 
the problem. 

b. The tube having been chosen, the next problem is to choose a type and number of 
interstage networks to meet the following requirements: gain 80 db; bandwidth = 7 
Mc. Which arrangement of single-tuned stages will meet these requirements with the 
fewest tubes? 

c. Which of the "fewest-tube" arrangements gives the best selectivity ratio? 
d. Which of the possible arrangements might be the best engineering compromise? 
10-5. Find the gain-bandwidth factor and the selectivity ratio for two single-tuned 

stages tuned to give a maximally flat delay characteristic. (Narrow-band conditions may 
be assumed to prevail.) 

10-6. An amplifier using 6EW6 tubes (with 6 pf of stray interstage capacitance) is to 
be built to give a very flat passband for telephone repeater work. Assume a band 5 Mc 
wide which must have a gain variation of no more than 0.5 db. The amplifier is to be 
made as a quadruple (i.e., four staggered stages). Compare the over-all gains obtainable 
from two amplifiers which would meet these specifications. The first is maximally flat 
with a 0.5-db bandwidth of 5 Mc. The second is an equal-ripple type with a 0.5-db 
ripple and a "ripple approximation band" of 5 Mc (see Fig. 9-10; the approximation band 
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referred to is Si). Assume for simplicity that the capacitances on all stages including 
the last are equal. 

10-7. An amplifier is to be a pair of stages tuned to give a maximally flat response. 
The lower band-edge frequency (where the relative gain is —3 db) is to be u = 3 
radians/sec. The upper band edge is at a = 20 radians/sec. 

a. What is the "center" frequency wo where the gain is maximum? 
6. Where are the poles and zeros of the gain function of the resulting amplifier? 

(Find by using the lowpass-to-bandpass transformation.) 
c. What are the center frequency and bandwidth of each stage? Check your results 

by use of either Table 10-2 or Fig. 10-4. 
10-8. An amplifier using single-tuned interstages is to be designed to give an equal-

ripple response. Four stagger-tuned stages are to be used to produce a 3-Mc bandwidth 
(3 db) centered at 60 Mc with a ripple of 0.1 db. Assume that the tubes have a total 
capacitance (C0ut + Ci n + Cw) of 15 pf and a gm of 5,000 Mmhos. 

o. Compute the pole positions which are to be realized by the interstage networks. 
6. What is the gain of the amplifier at 60 Mc? 
c. What is the bandwidth over which the 0.1-db tolerance is maintained? 
d. In decibels what is the increase in gain afforded by the equal-ripple case compared 

with a maximally flat amplifier of the same 3-db bandwidth? 
10-9. A two-stage amplifier with linear-phase characteristics is desired. Single-tuned 

circuits are to be used. 
a. Assume that the over-all bandwidth is 10 Mc with a center frequency of 20 Mc. 

What are the stage resonant frequencies, and what is the Q of each stage? 
b. What are the element values for each stage if C = 15 pf and gm = 5,000 ^mhos? 
c. What is the over-all gain at 20 Mc? 



11 
The Double-tuned Interstage 

In this chapter will be presented the double-tuned circuit as an alternative 
means of realizing amplifier gain functions, in contrast to the single-tuned 
interstage network employed thus far. Nothing will be added to the ap­
proximation problem: maximally flat and equal-ripple responses are still 
our most useful approximations to constant gain in the passband. We 
know what sort of complex gain functions will produce these responses, i.e., 
poles on a circle or on an ellipse, respectively. The task then is to find 
what sort of pole-zero arrangement comes out of the double-tuned circuit 
and how the pole coordinates are related to the circuit parameters. 

The double-tuned circuit, sometimes called transformer coupling, is a 
logical extension from the single-tuned circuit. It represents the general 
process of adding more circuit complexity in exchange for improved per­
formance. The improvement is of two kinds: a better gain-bandwidth 
factor and better selectivity, better in that one stage provides a two-pole 
response, instead of a one-pole as with the single-tuned stage. 

There are several equivalent forms of the double-tuned circuit, illustrated 
in Fig. 11-1, the most common being the inductive coupling and the pi 
equivalent. 

We shall confine the analytical discussion to the inductively coupled 
arrangement, specified by the primary inductance Li, the secondary induct­
ance L 2 , and a coupling coefficient k, defined in the conventional way as 

M 

" - v m < 1 1 - 1 ) 

The other forms of coupled circuit give identical performance if the follow-
241 
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ing equivalences are observed. For the pi equivalent 

L\T — 
LXL2 - M2 

L2±M~ 
L2* — 

L\L2 M 

=F M 
L3T — 

L,L2 - M2 

LX ± M 

where M is the mutual inductance between the two coils L\ and L2. For 
the autotransformer the inductances L\ and L2 are the open-circuit induct-

(a) 

£ 2 , 

(b) 

M, 

M = Lb+Mab 

(c) 

Fig. 1 1 - 1 Forms of an inductively coupled double-tuned interstage, (a) Inductive. 
(b) Pi equivalent, (c) Autotransformer equivalent. 

ances—i.e., the values measured with the opposite side of the transformer 
open-circuited. The equivalences are given in the figure. Note that a 
higher mutual inductance can be obtained for the autotransformer because 
the effective M is aided by the inductance of the lower coil, L2. 

We can further define primary and secondary resonant frequencies and 
Q's. These quantities are merely definitions and are not observable re­
sonant frequencies unless k —> 0. 

1 

(11-2) 
A 

012 = VL2C2 
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Qi 

Q2 

A Ri 

(11-3) 

C02L2 We are interested in the gain of the double-tuned amplifier stage, namely, 
V2/Vi as a function of the complex variable p. This function can be 
obtained by direct analysis of the circuits of Fig. 11-1 with the following 
form of result: 

A(p) 

where 

XL-

v , = 

A = 
B = 

V 

(1 - k2)Vc1C2 p 4 + Ap3 + Bp2 + Cp + D 

C02Q2 
(11-4) 

C O l 0>2 
Qi + Q2 

2 1 2 
00x012 Olx +0)2 

QlQ2 1 - k2 

c = 

D 

2 
Oil 0>2 

0^(1 - k2) V + oixQx 

2 2 
Olx 012 

/ 0S2QA 

\ OlxQlJ 

1 
We can see at once from Eq. (11-4) that there is one zero (at the origin) 

and four poles. In the cases of practical interest, the poles will appear in 
conjugate pairs, as depicted in Fig. 11-2. This figure suggests that the 
double-tuned circuit will be similar in its gain function to a pair of single-
tuned circuits in cascade, with the exception (an important exception in the 
wideband case) that the latter would have two zeros at the origin instead 
of one. 

There are several cases of practical importance, which we subdivide first 
into the narrow-band and wideband situations. Let us concentrate on the 
narrow-band case first. As before, we distinguish the narrow-band case by 
ignoring the conjugate poles (third quadrant) and any zeros at the origin. 
Thus Fig. 11-2 becomes Fig. 11-3. 

p2x Fig. 11-2 Pole positions for the inter­
stages of Fig. 11-1. 

t-

P,X 

Fig. 11-3 Narrow-band approximation of 
Fig. 11-2. 
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Next we consider two cases: (1) equal Q, that is, Q\ — Q%, and (2) one 
Q infinite, for example, Qi = °o. Because the denominator of Eq. (11-4) is 
a polynominal of fourth power, we cannot follow our usual procedure of 
factoring the denominator in general terms and then placing the resulting 
poles at the desired positions. Instead, to obtain a solution in closed form, 
we shall arbitrarily pick a set of pole positions which can be realized by a 
fourth-degree polynomial, form the polynomial giving the set of pole posi­
tions, and then equate the coefficients of like powers in that polynomial and 
Eq. (11-4) . For either maximally fiat or equal-ripple gain functions, the 
poles pi and p 2 in Fig. 11-3 should have equal damping (equal a); hence 
let us assume the poles are located at 

Pi = ~ a + fai 

p2 = - <r + j&2 
Let us further assume that the natural resonant frequencies of the trans­
former are equal; that is, o>i = w2 = l / V ^ i C i = 1/\ZL2C2. The 
latter assumption may seem unduly restrictive, but even with the restric­
tions on co and Q there are sufficient degrees of freedom left to realize the 
narrow-band case. The gain function for the assumed pole positions is 

P 
A(p) = 

(p + a + jQi)(p + o- - jaMp + o- + j9.2)(p + o- - jU2) 

P ~ p4 + p3(4(7) + p2(6o-2 + fJj2 + fi2
2) + p(4(T3 + 2aQx

2 (11"5'> 

+ 2*Q2
2) + (<x2 + Q^ia2 + Q2

2) 
Now the coefficients of Eqs. (11-4) and (11-5) may be equated and the 
above assumptions included. (Let a>i = co2 = a>0.) 

2o>o 
A = — = 4<r (11-6) 

Q 

B = 7^ + : Ti = S°2 + Oi + « 2 2 ( H - 7 ) 

OJQ 2co0 

2co 0
3 Q(l - k2) 

±o6 + 2(70x
2 + 2(r0 2^ (11-8) 

4 

D = = <r4 + o~2(£l\2 + 0 2
2 ) + QiW (11-9) 

1 — k 
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These equations may now be solved for the pole positions in terms of the 
actual element values. 

con 
a — — 

2Q 
(11-10) 

1 
1 - k 4Q2 

Ox = ± c o 0 J—T-—5 (11-H) 
1 1 

1 + k ~ 4Q2 
n 2 = ± c o 0 A / T - T - T - —g (11-12) 

Up to this point no assumptions have been made restricting the solution 
to narrow-band, although the pole positions have been chosen with the 
narrow-band situation in mind. The solution may be considerably sim­
plified at this point by noting that in a narrow-band case Q will be high 
and k will be small. Hence, for Q > 5 and k2 « 1, Eqs. (11-11) and (11-12) 
may be approximated by 

., n 2 = ± « o -Jj~r̂  = ± " 0 ( L ± ^ ) ( N - 1 3 ) 

Therefore the gain function in the narrow-band case may be written in 
the following simplified form: 

Qmkoin 1 

Mv)=^j=- - (n-14) 

4 V C 1 C 2 (p - pi)(p - p2) 

— uo ( k\ 

The constant in Eq. (11-14) is modified by the effects of the neglected 
poles in the lower half plane and the zero at the origin [cf. the derivation of 
Eq. (8-6)]. 

The locations of the poles are shown in Fig. 11-4. Notice that, if k = 0, 
the two poles are superimposed at — (co 0 /2Q) + jca0; then, as k is increased, 
the poles separate in the vertical direction but maintain the same distance 
from the jco axis. This increasing separation increases also the bandwidth 
(although the passband shape will vary); hence larger k is associated with 
larger bandwidths. Or, conversely, narrow bands require only small k, 
which is the justification for the assumption in Eq. (11-13) that fc2 <JC 1. 

We now have control over the pole locations in terms of the circuit param­
eters co0, k, and Q. It is hence a straightforward task to synthesize a 
maximally flat or equal-ripple response. For instance, Fig. 11-5 illustrates 
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the condition for maximal flatness with one double-tuned amplifier stage, 
i.e., two poles. 

From Fig. 11-5 the following relationships can be seen: 

oo ok COO 2 ~ 2Q 

a>0 circle radius Br/2 
2Q~ V2 ~ V2 

(11-16) 

(11-17) 

1 
or * = - (11-18) 

Q 

1 Br 1 B 
k = —y=— = —p=— Br in radians/sec, B in cps (11-19) V 2 coo v 2 fo 

The relationships in Eq. (11-19) are definitive for maximal flatness and 
are the ones usually found in the handbooks for the proper adjustment of a 
double-tuned circuit. The coupling coefficient k, so defined, is sometimes 
known as "critical," or "transitional," coupling, since it is the crossover 
value between a single-peaked and double-peaked amplitude response. 

4 1 1 Critical coupling kc = —, = — (ll-18o) 

r 

2Q 

/ /t 

\ 

\ 4 5 ° 

\ 
/ 

s 2Q 

Fig. 11-4 Pole positions for a stage with Fig. 11-5 Pole coordinates for a maxi-
Qi = Q2. mally flat stage with Qi = Q2. 
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The equal-ripple response could be similarly realized by increasing the Q 
in Fig. 11-5 to move the poles horizontally onto an ellipse of the proper 
minor diameter to yield the desired ripple magnitude. 

Now that it has been shown that a desired amplitude response can be 
realized, what about the gain-bandwidth factor? If one takes the value of fc 
defined by Eq. (11-19) and uses it in Eq. (11-14) to solve for the gain at 
band center (p = juo) and multiplies this by the bandwidth B (in cycles 
per second), which is the circle diameter Br divided by 2ir, the following 
obtains: 

This is the gain-bandwidth product, and it contains a term dependent 
mainly upon the tube, namely, gm/2T(2\/C\C2). This quantity cor­
responds to gm/2ir(Ci + .C 2 ) , which was the gain-bandwidth product of 
the single-tuned stage, and is very closely the same unless C\ is very 
different from C2 (the difference is only 6 per cent for a 2:1 ratio). The new 
form of this factor is indeed the gain-bandwidth product for the single-
tuned circuit if an ideal transformer is included. The important fact is that 
the double-tuned circuit, with equal primary and secondary Q, is better by 
(at least) \/2, and hence the gain-bandwidth factor of the circuit is \/2. 
(Note that the GBF will be even larger for the equal-ripple case.) 

The next case of interest is that in which one of the Q's is infinite. This 
condition can only be approximated in practice, since the primary is always 
loaded by the plate resistance of one tube and the secondary by the input 
conductance of the other. Both primary and secondary have inevitable 
circuit losses. Nevertheless, in wideband applications the required Q is so 
low that, in contrast, the unloaded Q of either primary or secondary 
(primary in particular, at high frequencies) will be so large in proportion 
that the results predicted by assuming this Q to be infinite are approximated 
quite closely. 

Again Ave assume the narrow-band conditions to prevail. The gain func­
tion [Eq. (11-14)] is the correct one, except that the factors of the denomina­
tor polynomial, i.e., the poles, will be different. They are 

A graphical plot of the pole location for three particular values of A; will 
make evident the differences between this and the equal-Q case. Thus it is 

(11-21) 

Qi = 00 «l 
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V 2 Q 2 

Br 

= — radians/sec 
co 0 

B 

To 
cps (11-24) 

The gain-bandwidth factor for this case can be found in the same way as 
for the equal-Q case, namely, by substitution of the pole coordinates from 
Fig. 11-7 into the gain function [Eq. (11-14)] to obtain the midband gain 
and then by multiplying this by the bandwidth. The result is that the gain-
bandwidth factor when one Q is infinite is 2.0, instead of \ / 2 for equal Q's. 

The fact that the case of Qi = °° is y / 2 times better in gain-bandwidth 
can be detected immediately by a comparison of Figs. 11-5 and 11-7. 
Suppose that we assume the circles to be the same size in both figures, thus 

I-"0 
4Q2 

"0 
4<? 2 " 

(a) 

w0 
— 4 2 . - -

(b) 

o>0K 

2 _v 

(c) 

2 

r 4Q, 
Fig. 11-6 Pole positions as k is changed (Qi = °o). (a) k — 0. (6) k = l/2Qi. (c) 

k > 1/2Q2. 

seen in Fig. 11-6 that, as k is increased from zero, the poles move together 
horizontally, then separate vertically. A particular case is that for maximal 
flatness, illustrated in Fig. 11-7. 

corjfc _ coo 
— = V 2 ~ (11-22) 

2 4Q2 

coofc _ B r 

— = circle radius = — (11-23) 
2 2 
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/ . 
' 2 

I 
\ 
\ 

\ 
• 45 

V 

Fig. 11-7 
nates for 

giving the same bandwidth for both cases. The 
gain function [Eq. (11-14)] will have the same value 
for the fraction involving p and will differ between 
the two cases only in the value of k in the scale 
factor. Comparing the two figures reveals that k 
is y/2 times larger in the case of Qi = =°, and 
hence its gain-bandwidth factor must be larger in 
the same proportion. 

Note that, in the Qi — » case, moving the poles 
toward the jco axis to achieve an equal-ripple re­
sponse (Sec. 9-3) decreases the value of k as well 
as bringing the poles closer to the jco axis. Hence 
the GBF for equal ripple is increased less than for 
the Qi — Q2 case, for the same ripple. 

11-1 Cascading of Stages. When maxi­
mally flat, double-tuned stages are used in cascade, 
the bandwidth narrows. The narrowing factor is 
the same for any two-pole stages and hence must be the same as for stag­
gered pairs, namely, the factor obtained from Eq. (10-3) for n = 2, 

Pole coordi-
a maximally 

flat stage with Qi = » . 

Bandwidth of m stages 
Bandwidth of one stage 

= ( 2 1 / m - 1) (11-25) 

/ 

/ 

\ 
\ 

\ 
\ 
\ 
\ 

The gain-bandwidth factor for m stages is the value of Eq. (11-25) multi­
plied by either \/2 or 2, depending on whether Qx = Q2 or Qx = = 0 . 

11-2 Stagger Damping. The term "stagger 
|o> damping" was coined, apparently by Wallman, to 

describe a form of stagger tuning using double-tuned 
circuits (Qi = = 0 ) in the narrow-band situation. 
The technique permits the synthesis of 2m-pole, 
maximally fiat responses with m double-tuned stages 
in cascade. The stages are tuned identically (that 
is, coi = w2 = co 0) and have equal fc's. The stag­
gering is accomplished by varying the stage damp­
ing. 

k . . The basic principle of stagger damping can be 
\ I / demonstrated readily by means of Fig. 11-8, which 

shows a two-stage example. The four poles are 
shown in the proper positions to yield a maximally 
flat amplitude response of bandwidth Br. Two of 

Fig. 11-8 Pole posi- ^ n e p 0 i e S ) px a n ( j p 2 j a r e assigned to one double-
tions for a maximally . , , RPI • J 7 j j? I 
„ , , , tuned stage, the required k and (J tor this stage 
flat stagger-damped 0 

amplifier (two stages) a r e computed from Eq. (11-14) or (11-21). The 
(Qj = «), other two poles, p 3 and P 4 , are assigned to the second 

/ 
/ 
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stage. Since the radial distance is the same, the k for each stage will be the 
same and the GBF for the set of m stages will be 2.0. If stages with 
Qi = (?2 are used, the value of both k and Q will vary from stage to stage 
and computation of the GBF must take into account the different values 
of k since it appears in the constant multiplying Eq. (11-14). The resulting 
curves of stage gain vs. frequency are shown in Fig. 11-9. 

The technique is obviously not limited to the four-pole case. Any even 
number (2m) of poles can be used, each pair corresponding to one double-
tuned stage. The practical limits are excessive Q's and extreme precision of 
adjustment for the higher-order cases. 

k Gain 

11-3 The Wideband Case. In the wideband situation, account must 
be taken of the zeros at the origin and the conjugate poles in the third 
quadrant. When these are brought into consideration, it is evident that the 
circular locus for the poles to give maximal flatness must be "warped" to 
counteract—in terms of the potential analogy—the additional charges. 

The same technique of conformal mapping, or transformation of variable, 
can be used as in the case of single-tuned circuits. The details of the trans­
formation must be slightly different, however, because with double-tuned 
circuits there is only one zero at the origin for each pair of poles in the 
second quadrant. The proper transformation for the inductively coupled 
double-tuned circuit to give a maximally flat amplitude response is given 
by Eq. (11-26) and illustrated by Fig. 11-10. 

(11-26) 

Several features of the wideband situation can be observed from Fig. 
11-10. The pole locations have been drawn to scale and the center frequency 
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properly placed, corresponding to the frequency of maximum response. 
The 3-db band "edges" are the two points where the pole locus intersects 
the jo> axis, as before. The upper 3-db frequency is six times the lower one, 
thus indicating genuine wideband conditions. 

The center frequency a>0 is very closely the arithmetic mean of the upper 
and lower 3-db frequencies. In other words, the response curve will be 
arithmetically symmetrical, even for bandwidths as large as that illustrated 
(which, by the way, could be described by S = B/f0 = 1.43). Moreover, 

Fig. 11-10 Pole positions for the wideband case. 

for bandwidths less than the one illustrated, the pole locus is very closely a 
circle. The proper interpretation of this situation, in terms of the potential 
analogy, is that the single negative charge at the origin (for each circuit) is 
about right to compensate for the two positive charges at a greater distance 
in the third quadrant. In the single-tuned case there would be two negative 
charges at the origin for each pair of positive charges, and this would 
excessively depress the potential near the origin, requiring a greater dis­
tortion of the circular locus to compensate. 

The transformation given in Eq. (11-26) will not work for the equal-ripple 
response. The poles must be symmetrically situated about a circular locus 
in the p plane in order to yield a physically realizable pole set in the s plane. 
Hence, the elliptical locus required for equal ripple is ruled out. A suitable 
transformation has been devised by Trautman and Aseltine;1 it involves 
elliptic functions and is not easy to use. Their study shows, however, that 

1 See D. L. Trautman and J. A. Aseltine, Equal-ripple Bandpass Amplifiers, Univ. 
Calif., Los Angeles, Dept. Eng. Rept. 51-9, August, 1951. 
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- 2 0 0 ° 

-600° 

Phase 

200° 

0 

To -810° 

the pole locations are very closely on 
an ellipse in the s plane, even up to 
large bandwidths as in the maximally 
flat case described above. The re­
sponse has arithmetic symmetry (of 
amplitude), as illustrated for a typical 
case in Fig. 11-11. This arithmetic 
symmetry of the amplitude response 
may be of advantage with a modu­
lated signal where upper and lower 
sidebands must receive equal ampli­
fication. Notice, however, that the 
phase response is not arithmetically 
symmetrical about the center fre­
quency. 

Fig. 11-11 Gain and phase response of 
a wideband equal-ripple double-tuned 
amplifier (three stages). 

Thus we conclude that for most 
practical bandwidths, say 8 < 1.25, the pole locations for the inductively 
coupled double-tuned circuit can be determined with adequate accuracy 
by simply laying out a circle or an ellipse in the s plane, essentially treat­
ing the problem as a narrow-band one. But, for bandwidths greater than 
perhaps 0.2, care must be taken in going from pole locations to circuit 
parameters. Some design charts have been published.1 The results of the 
previous derivation of pole positions in terms of element values may be 
used if the final approximations are not used; i.e., the results of Eqs. 
(11-10) to (11-12) may be used. A similar process gives the tuning fre­
quencies for the Qi = 0 0 case. In an extremely wideband situation <r\ 
will not always equal <r2 for the poles of one interstage; to obtain this, the 
restriction cox = o>2 must be removed, and the result will be both staggered 
tuning and staggered damping. 

11-4 The Capacitance-coupled Circuit. The discussion up to now 
has been confined to the situation where the primary and secondary circuits 
were inductively coupled together, either with mutual inductance or with 
the pi or T equivalent (Fig. 11-1) . There is an alternative case which is of 
both theoretical and practical interest. This case is called capacitive (or 
capacitance) coupling and is illustrated in Fig. 11-12. The only coupling 
from primary to secondary is through the capacitance Cm. A coupling 
coefficient can be defined for the network, analogous to the inductively 

1 Maximally flat only. For one circuit, see G. E. Valley, Jr., and H. Wallman (eds.), 
"Vacuum Tube Amplifiers" (vol. 18, M.I.T. Radiation Laboratory Series), pp. 219-220, 
McGraw-Hill Book Company, Inc., New York, 1948; for two and three stages, see 
M. M. McWhorter, The Design, Physical Realization and Transient Response of Double-
tuned Amplifiers of Arbitrary Bandwidth, Electronics Research Lab., Stanford, Tech. 
Rept. 58, February, 1953. 
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coupled circuit, 

fc4 Cm (11-27) 

In terms of this coupling coefficient, the gain function for the capacitively 
coupled double-tuned circuit is comparable in form to that of the induc­
tively coupled circuit, as in Eq. (11-4): 

„3 

A(p) = H p 4 + ap3 + bp + cp + d 
(11-28) 

The principal point of contrast with the inductively coupled case is that 
here there are three zeros at the origin, as indicated by p3 in the numerator, 

Fig. 11-12 Double-tuned capacitively coupled interstage. 

instead of only one in Eq. (11-4). This has a pronounced effect on the 
shape of the amplitude-response curve in the wideband case. 

First, however, in the narrow-band case, which we distinguish by ignoring 
the zeros at the origin and also the conjugate poles in the third quadrant 
(Fig. 11-13), there is essentially no difference between capacitance and 
inductance coupling. The variation of pole locations with fc and Q, the 
gain-bandwidth factor, etc., are all the same in the narrow-band case. 

But, in the wideband case, matters are far from equivalent. Speaking in 
terms of the potential analogy, the three negative charges at the origin 

P, X 

P2x 

P 2x 

(a) Fig. 11-13 Pole positions for a double- Fig. 11-14 Response of a double-tuned 
tuned capacitively coupled interstage. capacitively coupled interstage, 
(a) Wideband. (I) Narrow band. 
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cause the potential on the low-frequency side to fall much more rapidly 
with frequency than it does on the high-frequency side of band center. The 
amplitude response thus appears as in Fig. 11-14. 

Moreover, the gain-bandwidth factor of the capacitance-coupled circuit 
is highly unfavorable in wideband situations. For comparison with the 
inductively coupled case, there are plotted in Fig. 11-15 the curves of 
gain-bandwidth factor for Qi = <x>. 

Inductive coupling 

oo 
Relative bandwidth 

Fig. 11-15 Comparison of GBF1 for inductive and capacitive coupling. 

11-5 The Autotransformer. Another form of double-tuned inter­
stage, which is really a special case of inductive coupling, is the autotrans­
former shown in Fig. 11-lc. While this scheme is well known at 60 cps, it 
has not received wide employment at radio frequencies. It nevertheless is 
quite applicable, and the design can be straightforward.1 It has particular 
advantage in wideband double-tuned amplifier stages with large bandwidth 
and large ratio Ci/C2; in fact, it turns out conveniently that the auto­
transformer is physically realizable in those regions of operating conditions 
where the pi equivalent is not (because of one or more negative elements)} 

11-6 Selectivity Ratio. The selectivity ratio of one maximally flat 
double-tuned stage is the same as that of the maximally flat staggered 
pair. Similarly, the selectivity ratio of cascades of identical stages is the 
same as for cascades of pairs. Hence, both Eq. (10-3) and Fig. 10-10 apply, 
provided that one takes values only for n = 2. 

Stagger damping or stagger tuning in the wideband case can also be 
studied from Fig. 10-10. For a maximally flat pair of double-tuned stages 
take n = 4; for a maximally flat triple take n = 6; etc. 

1 W. A. Edson, The Single-layer Solenoid as an RF Transformer, Proc. IRE, vol. 43, 
pp. 932-936, August, 1955. 

2 M. M. McWhorter and J. M. Pettit, The Design of Stagger-tuned Double-tuned 
Amplifiers for Arbitrarily Large Bandwidth, Proc. IRE, vol. 43, pp. 923-931, August, 
1955. 
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PROBLEMS 

1 1 - 1 . An amplifier using double-tuned stages with Qi = » is to be designed. As an aid 
to the design, graphs similar to Fig. 10-9 are desired, but for double-tuned stages. 

a. On a single sheet of three-cycle semilogarithmic graph paper construct curves for 
one, two, and three identical stages; one, two, and three staggered pairs; and one 
staggered triple. [The normalized bandwidth will be B/(t>M/47R-\/C1C2).] 

b. Assume that the amplifier is to use a minimum number of tubes, gm = 5,000 jimhos, 
Cm = COUT *= 5 pf, gain = 75 db (over-all), the over-all bandwidth is 5 X 107 radians/sec, 
and the band center is TOO = 10 9 radians/sec. Determine what amplifier configuration 
uses the minimum number of tubes, and find the stage tuning frequencies, Q's, and fc's for 
each stage of the amplifier. 

1 1 - 2 . Derive Eq. (11-21) for the Qi = x case, using the same method as that outlined 
for the derivation of Eq. (11-13), the Qi = Q2 case. 

1 1 - 3 . A two-stage amplifier using identical double-tuned circuits (Qi = =0) is required. 
The amplifier is to be adjusted so that the over-ail response has 0.5 db ripple (i.e., 20 
times the logarithm of the ratio of peak to valley gain is 0.5). 

a. What is the gain-bandwidth factor of the amplifier? (Assume that C\ = C2.) 
b. Compare this amplifier with one using two identical single-tuned circuits adjusted 

to give the equal-ripple response specified above. Calculate the ratio of gains obtained for 
the same bandwidth, the ratio of bandwidths obtained for the same gain, and the 
selectivity ratios of the two amplifiers. 

c. A line representing this double-tuned amplifier can be drawn on Fig. 10-9. State 
clearly where this line should be drawn; i.e., give the slope and the intercept with the 
0-db axis. 

d. In terms of the fractional bandwidth (assume that this is small), find the values of 
k and Q2 which should be used for each stage. 

1 1 - 4 . Compare the gain-bandwidth factors for stages giving an equal-ripple response 
with 0.1 db ripple, but in one case having Q\ = Q2 and in the other case having Qi = x. 
Why is the percentage change in the gain-bandwidth factor from the corresponding 
GBF's for maximally flat stages different in the two cases? 

1 1 - 5 . Design the interstages for a two-stage stagger-damped amplifier using double-
tuned circuits. The over-all bandwidth is to be 5 Mc with a center frequency of 60 Mc. 
The response is to be equal ripple with 0.1 db ripple. 6AK5 tubes are to be used with 
capacitances of C\ = 6.5 pf and C2 = 6 pf, and gm = 5,000 /iinhos. 

a. Make a table giving the values of wj, «2 , L\, L%, k, and Q for each stage. 
b. What is the gain of the two stages at TO = TOO? 
1 1 - 6 . Determine the circuit parameters k and Q in terms of the over-all amplifier 

bandwidth and center frequency for the three stages of a stagger-damped double-tuned 
maximally flat amplifier. Assume that the bandwidth is less than 10 per cent of the center 
frequency and that the primary and secondary Q's of each interstage are equal. Sketch 
the gain-frequency curve for each stage. (Do not calculate the curves, but try to visualize 
them from the pole-zero diagram.) 

1 1 - 7 . The gain-bandwidth factor for maximally flat stagger-damped double-tuned 
stages is the same as for a single maximally flat stage (i.e., 2) if Qi = x. However, if 
Qi — Qi, then the GBF for the stagger-damped stages will not be equal to the GBF for a 
single maximally flat stage. Explain why this is true. Which will have the greater GBF, 
the single stage or the stagger-damped stages? 

1 1 - 8 . A given amplifier is to have three stages and an over-all bandwidth of 10 Mc. 
The tubes to be used have a gain-bandwidth product of 100 Mc (with an allowance for 
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stray capacitances). Make a table giving the gain attainable in this amplifier if the following types of amplifier are used: 
a. Single-tuned, synchronously tuned stages 
h. A single-tuned, maximally flat triple 
c. Double-tuned identical stages (Qi = Q2) 
d. A double-tuned maximally flat stagger-damped triple (Qi = ») 



12 
The Feedback Pair 

Among the available amplifier circuits for realizing a maximally flat or 
equal-ripple response, while at the same time providing a high gain-
bandwidth factor, are a class of circuits employing feedback.1 The use of 
feedback is for the purpose of increasing the gain-bandwdith product with 
simple circuits, and not for the usual objective of high stability of gain. 
The amount of feedback introduced is usually too small to make any signifi­
cant difference in stability. 

12-1 General Design Relations for a Feedback Pair. A very 
useful and indeed the simplest example of this kind of feedback amplifier is 
the "feedback pair," illustrated in Fig. 12-1. Notice that either a bandpass 

Lowpass 

Forms of Yl and Yz 

Bandpass 

Fig. 12-1 Basic circuit of the feedback pair. 

1 See G. E . Valley, Jr., and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, 
M.I.T. Radiation Laboratory Series), chap. 6, McGraw-Hill Book Company, Inc., New 
York, 1948; H. N. Beveridge, Broadband Feedback Amplifiers, IRE Conv. Record, pt. 
5, pp. 52-56, March, 1953. 

257 
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or a lowpass amplifier can be produced by proper choice of Y\ and Y% The 
feedback path can, in general, contain a variety of networks, but for the 
case at hand it consists of only a resistor having a conductance GX2, con­
nected from the plate of the second tube back to the plate of the first tube 
(grid of second tube). 

. . . . V2 9ml(gm2 ~ G12) 
Gain A(s) Vi (G12 + Yl)(G12 + Y2) + G12(gm2 - G12) 

gm\(gm2 ~ G\2) 

Y,Y2 + G 1 2 (F , + F 2 ) + G,2gm2 

(12-1) 

A straightforward nodal analysis yields the gain function given in Eq. 
(12-1). Consider the bandpass case where 

Yx = Y2 = G + sC + -i-sL 

= G 1 + Q 
*COQ \co 0 s / J 

<?(1 + Qp) (12-2) 

A S C00 A A 

where p = 1 Q = —— and co 0 = 
<oo G VLC 

Substituting these values for Yx and Y2 into Eq. (12-1) gives for the gain 
in terms of the lowpass variable p 

gmi(gm2' G12) 

p2G2Q2 + p(2G2Q + 2G12GQ) + G2 + 2Gl2G + G12gm2 

Mv) = , „ 2 n 2 , __tnfian , n „ „ n , ^ , «,„ „ , „ . (12-3) 

This function has only poles in the finite part of the p plane; therefore we 
may arrange the poles as before to give a desired response. However, in­
stead of then transforming the pole locations back into the s plane, we may, 
instead, discover the p-plane coordinates in terms of the element values 
G, L, C, etc. Thus we do not need to perform the reverse transformation 
since all the data we need will be present in the p plane. The poles of 
Eq. (12-3) lie at 

1 / G + Gl2 GX2 gm2\ ^ 
p»p* = q(—r^H1-d (12-4) 

•(G + Gi2) GX2 gm2 

±j / 1 (12-5) 
COQC coNC \ Gl2 



SEC. 1] GENERAL DESIGN RELATIONS FOR A FEEDBACK PAIR 259 

The pole locations are as shown in Fig. 12-2 if gm2 > GX2. These two poles 
produce four complex poles and a zero at the origin in the s plane, as shown 
in Fig. 12-3. If we wish a maximally flat response in the p and s planes, we 
place the poles so that the real and imaginary components are equal in the 

G+G 1 2 

' 0 C V G 1 2 

t 

p plane 

X 

s plane 

Fig. 12-2 Pole locations in the p plane. Fig. 12-3 Pole locations in the s plane 
corresponding to Fig. 12-2. 

p plane. The radial distance from the origin to the pole is then the normal­
ized bandwidth, B r/co 0. In terms of the pole coordinates, the bandwidth is 

- Gia + G G12 gm2 

BT = y/2 «o — = V 2 — J - 1 
coot &)0C \ ( T 1 2 

(12-6) 

Solving Eq. (12-6) for the value of G 1 2 necessary to give the required 
bandwidth, we obtain 

CRIO = 
9m2 

2 L 
1 ± J l 

2(BrC)2 

gmi 
(12-7) 

The negative sign in Eq. (12-7) is usually taken, since larger gain results. 
For values of BrC/gm2 « 1 an approximate value for (? 1 2 may be obtained 
by using the binomial expansion for the square foot, 

G\2 

(BrC)2 BrC 
« 1 (12-8) 

2gm2 gmi 

The value of loading conductance G may be found from Eq. (12-6) also, 

BTC 
G = V ^ ~ G l 2 

(12-9) 

The values of L and C are such as to resonate at co0, of course. The result­
ing amplifier will be a maximally fiat bandpass amplifier with center fre-
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quency w0 and bandwidth Br. This has been obtained without ever dis­
covering the s-plane pole locations. The response shape will be identical to 
a maximally flat stagger-tuned pair, but the gain-bandwidth factor will be 
slightly less (see Sec. 12-3). 

G+a... 

Gl2 0,2 
oi0C 

p plane 
(a) 

G+G,. 

P,,P, 

(c) 
Fig. 12-4 Pole positions of the feedback pair as gm? is varied, (a) 

g,n2 = Gn. (c) gm2 = Git + ^G "t, (maximally flat). 
Orl2 

= 0. (6) 

The gm of the second stage has an important effect upon the response 
shape; therefore gm2 may not be varied to control gain alone but may 
instead be varied to change the passband shape. The pole locations for 
different values of gm2 are shown in Fig. 12-4. Note from Eq. (12-3) that 
gain is produced even when gm2 = 0, as in Fig. 12-4a, but zero gain results 
for gm2 = G12, as in Fig. 12-46. 

12-2 Bandwidth Switching. A unique feature of the feedback pair 
is the possibility of a two-position bandwidth switch, involving no modifica­
tion of the high-frequency circuits but only a d-c change. The bias on the 
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second tube is switched between the conditions of normal plate current for 
the WIDE and zero plate current for the NARROW positions. 

There are enough degrees of freedom in the circuit parameters 1 to permit 
specification of: 

1. Maximally flat response in the WIDE position 
2. Bandwidth Bw in the WIDE position 
3. Ratio of gains between the two positions 
4. Ratio of bandwidths between the two positions 
General design equations are not available, but a large number of cases 

are presented by Valley and Wallman. As an example, a specification of a 
bandwidth ratio of 4:1, with equal gains in WIDE and NARROW positions, 
leads to the following requirements for a given radian bandwidth Bw: 

G\ G2 G\2 gM2 — G12 „ 
9.20 — = 1.97 — = 2.49 — = 0.746 = Bw radians/sec 

C C C C 
(12-10) 

For this example, the pole locations (in the p plane) prove to be as follows: 
WIDE 

(-0.707 4- J0.707)BW 

On 

(-0.707 -jQ.707)Bw 

oo 
NARROW 

-1.158ZL, 
o 0 

-0.2605 u 

o 0 

It is of interest to note that the design requirements specify the gm of the 
tube for a given capacitance C. This may mean operating at reduced gm in 
order to achieve the switching benefits. 

12-3 Gain-Bandwidth Factor. The feedback pair is similar to the 
staggered pair in many respects, including gain-bandwidth factor. This 
factor must always be slightly less than for the staggered pair, because of 
the equivalent reduction of the gm of the second tube, as can be seen from 
the gm2 — <?i2 term in the scale factor of Eq. (12-3). For the bandwidth-
switching example just described, it turns out that the gain-bandwidth 
factor in the WIDE position is 0.88. 

1 The two load conductances Gi and G% cannot in general be identical as they are in 
Eq. (12-2). 
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12-4 Selectivity Ratio. This parameter depends upon the nature of 
the gain function, e.g., maximally flat, and not upon the circuit which 
produces it. Hence, a maximally flat feedback pair has the same selectivity 
ratio as a staggered pair or double-tuned stage. 

PROBLEMS 

1 2 - 1 . Find an expression similar to Eq. (12-7) which gives the value of Gn necessary 
to obtain a prescribed equal-ripple response. The expression should be a function of Br, 
C, gm2, and tanh a. (For the latter see Chap. 9.) 

1 2 - 2 . A feedback pair is desired which has a bandwidth Bw with tube 2 operating that 
is approximately five times the bandwidth Bn obtained with tube 2 off (gm2 = 0). The 
passband in the WIDE position is to be maximally flat. Assume that identical plate 
networks are used (that is, Y\ = Yi). 

a. Find the parameters G = Gy = Git (? 1 2, and gm% in terms of Bw and C. 
b. Find numerical values for the preceding parameters and the tuning inductors if 

Bw = 5 Mc, f0 = 15 Mc, and C = 20 pf. 
c. Sketch the pole-zero diagram in the s plane which results when gm2 = 0. 
1 2 - 3 . A feedback pair is to have a bandwidth of 25 Mc and a center frequency of 60 

Mc. The tubes to be employed are Mullard E180F pentodes with the specifications given 
below. One power supply may be used with any desired value of voltage. Assume that 
the stray capacitance is 5 pf per stage. 

ES = 6.3 volts Ea - 0 volt 
Is = 0.3 amp Ed = - 1 volt 

CIN = 7.9 pf Is2 = 3.0 ma 
COUT = 2.9 pf Ib = 13 ma 

CIN = 11.2 pf gm = 16.5 ma/volt 
(at h = 13 ma) Input damping = 6 kilohms 

Eh = 190 volts (measured at 50 Mc) 
EC2 = 160 volts 

a. Give a complete schematic diagram of the resulting feedback pair, assuming that 
these stages are the third and fourth stages of an eight-stage amplifier. Include all 
components with typical or calculated values. (The bypass capacitors have no uniquely 
determinable value, but reference to the first part of Chap. 15 may prove useful in de­
termining a reasonable value.) 

b. Find the center-frequency gain and over-all bandwidth of four such feedback pairs. 
c. What is the approximate bandwidth of the pair if the plate current to the second 

tube is cut off? 



13 
Noise in Amplifier Circuits 

13-1 Circuit Noise. In a broad sense "noise" could be defined as any-
current or voltage not the signal. Thus, if the "signal" is a single-frequency 
sine wave, any currents having frequency components at other than this 
frequency would be classed as noise. Hence an imperfectly filtered power 
supply might introduce harmonics of 60 cycles (hum) into the output; 
however, such spurious signals could always be removed by better filtering 
of the supply. Another form of such a signal, which cannot be removed by 
such filtering, is hum originating from the a-c operation of tube heaters. 
Even such noise could, in principle, be completely removed at the expense of 
a d-c heater supply. Other forms of noise which originate inside an amplifier 
and which can be reduced or eliminated by better environment include 
microphonic noises caused by tube-element vibration and in some cases the 
vibration of passive elements, particularly capacitors sustaining a d-c volt­
age. (Note that the transistor is superior in eliminating most of these 
mechanical noises.) 

Another type of noise, which is perhaps more troublesome, originates 
outside the amplifier. For example, static and interfering signals are, in the 
broad sense, both noise. These types of noise, however, are really a system 
problem in that decreasing the noise cannot be achieved by changing the 
amplifier itself (except by providing the proper band shape to pass the de­
sired signal and reject as much interference as possible). 

The amplifier itself does introduce, however, a noise signal which deter­
mines the ultimate limit to the sensitivity of a system when noise sources 
like the preceding have been eliminated. This noise, which is particularly 
troublesome in wideband high-gain amplifiers, has its origin in the input 
stages of the amplifier. The presence of this natural input noise sets a limit 
on the gain which can usefully be attained. If the gain of the amplifier is 
sufficient to produce a large noise signal in the output, then adding more 
gain may only cause the output to saturate on noise and will not increase the 

263 
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sensitivity of the amplifier to weak signals. Indeed the signal-to-noise ratio 
in a high-gain amplifier is essentially independent of the gain of the amplifier 
and is determined primarily by the design of the input amplifier stage. 
(This assumes that those sources of noise which can be reduced in the ampli­
fier have been made negligible.) 

The noise which will be discussed here is properly known as random noise, 
hereafter referred to simply as noise, and has its origin in the motion of 
electrons. In an electrical conductor at a temperature above absolute 
zero there is always thermal agitation that produces motion of the elec­
trons; this motion manifests itself as a minute electric current which can 
be detected with sufficient amplification. The amount of noise can be 
forecast from theoretical consideration of the thermodynamics involved.1 

The name usually given to this noise is thermal noise. Because of the large 
number of charges in any conductor, moving at random with high velocities 
made possible by their small mass, the resulting currents are random in 
their amplitude and phase and contain all frequencies of any practical 
interest up to thousands of megacycles. Accordingly, it is not possible to 
describe the amount of noise by the usual quantities of amplitude of wave­
form or of frequency component. Even a description of the frequency 
distribution, or power spectrum, tells little, for this spectrum is uniform for 
all practical frequencies. There is one useful quantity, however, which pro­
vides a measure that can be compared with ordinary signal quantities, 
namely, the average power, or the mean square, of the current or voltage 
(or the rms) measured in a band of frequencies. 

The basic law for the amount of thermal noise that would appear as an 
open-circuit voltage across a conductor of resistance R, and summed as a 
mean square across a bandwidth B, is as follows: 

^ = 4kTBR volts2 (13-1) 

where k = Boltzmann's constant (1.37 X 1 0 - 2 3 watt-sec/deg) 
T = absolute temperature, °K (°C + 273.1) 
B = noise bandwidth, cps 
R = resistance, ohms 

4kT = 1.6 X 10~ 2 0 for T = 293°K 
The noise equivalent circuit shown in Fig. 13-1 indicates the mean-square 
noise voltage vn

2 in series with a noiseless resistor R. The Norton equivalent 
is also shown in Fig. 13-1 and has a current generator of mean-square value 

^ T 0 C - 4kTBO (13-la) 
1 The experimental discovery is usually credited to J. B. Johnson, Thermal Agitation of 

Electricity in Conductors, Phys. Rev., vol. 32, p. 97, July, 1928; the first analysis is due 
to H. Nyquist, Thermal Agitation of Electronic Charge in Conductors, Phys. Rev., vol. 
32, p. 110, July, 1928. An excellent tutorial article on noise is given by J. R. Pierce, 
Physical Sources of Noise, Proc. IRE, vol. 44, p. 601, May, 1956. 
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Note that the available power from either representation is 

PAV = kTB (13-2) 

A sufficiently sensitive instrument responding to mean-square currents or 
voltages, such as a thermocouple or a bolometer, if preceded by a noise-
free amplifier with bandwidth B and with an infinite input impedance, 
would give a reading proportional to Eq. (13-1). The resistance is assumed 
constant over the passband, which is 
assumed to have a rectangular shape 
of width B. 

Thermal noise sets an ultimate < 77=4KTBG( 
limit on how weak a signal one can ( ) û=4KTBR 
amplify and perceive at the output 
of the amplifier. Such a signal will . . 

. . . . . Fig. 13-1 Equivalent circuits for ther-always originate in a source having m a l n o i g e 

an internal resistance, and hence the 
signal will be accompanied by noise. Even a perfect amplifier, introducing 
no additional noise, cannot reduce the thermal noise generated in the 
signal source. 

The practical fact is that the amplifier will introduce a certain amount of 
additional noise. It will be our purpose here to evaluate the amount of ad­
ditional noise and later to see what can be done to minimize it. 

13-2 Tube Noise. The added noise in a vacuum-tube amplifier comes 
from the tubes, particularly the first stage. The electron stream in the tube 
is not a perfect fluid but consists of discrete particles. These particles, the 
electrons, arrive at the anode of the tube with random phase and combine 
to produce a spectrum of frequency components of current extending from 
d-c to extremely high frequencies—as high as are encountered in any 
electronic system. The spectrum is uniform up to frequencies at which 
transit time becomes important. The noise current can again be defined 
quantitatively by its mean-square value. 

There are three principal classes of tube noise occurring in conventional 
amplifier tubes. These are shot noise, partition noise, and induced grid 
noise. In any given amplifier the three contributions can be evaluated. 

Shot noise is the result of the random arrival of electrons at the anode of a 
tube. The simplest situation is that of a temperature-limited diode in which 
the mean-square noise current in a bandwidth B i s 1 

in
2 = 2qIdcB (13-3) 

where q = electron charge (1.60 X 1 0 - 1 9 coulomb) 
IDC = d-c component of diode current, amp 

1 For transit-time correction, see D. B. Fraser, Noise Spectrum of Temperature-
limited Diodes, Wireless Engr., vol. 26, pp. 129-131, April, 1949. 
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Temperature-limited operation is of little use in amplifiers, although a 
diode used in this manner provides a convenient noise source for measure­
ment purposes. When tubes are space-charge-limited, the noise current is 
less and is usually expressed by the following relationship: 

i 2 = 4kTBRcqgm
2 (13-4) 

2.5 
where Re(i ~ — triodes (13-5a) 

Qm 

h /2.5 20 / c A 
Req —- ( 1 T ) pentodes (13-56) 

h + IcZ \gm Qm I 

where Ib = d-c plate current, amp 
Ic2 — d-c screen current, amp 
9m — grid-plate transconductance, mhos (use value appropriate to 

pentode or triode operation) 
The pentode case requires special explanation. The second of the two 

terms in Eq. (13-56) for Req is not truly shot noise but is due to partition 
noise. In a pentode, as opposed to a diode or triode, the current leaving the 
cathode does not all go to the anode or plate. A portion goes to the screen 
grid, but not an absolutely constant portion. There is a small random vari­
ation in the division, or "partition," of the total current which introduces an 
additional set of noise components (partition noise) in the plate current. 

The custom of expressing shot and partition noise in terms of the equiva­
lent noise resistor has arisen from the fact that, if the proper resistor 
generating thermal noise as given by Eq. (13-1) were connected between 
grid and cathode of a tube having a given gm but idealized by having no 
noise, there would be amplified thermal noise in the plate current exactly 
equal to the shot noise appearing in the actual tube. 

The final source of noise that is important in wideband amplifiers is 
called induced grid noise. The random flow of electrons in the tube current 
can induce currents in the grid circuit as the electrons pass the grid of the 
tube. The amount of this noise varies with frequency squared, as does 
the input conductance of the tube; hence the usual expression for induced 
grid noise is in terms of the input conductance as follows, 

i 2 = 5(4kTGTB) 

= mean-square noise in the grid (13-6) 

where GT = input conductance due to electron stream (not due to feedback 
such as grid-to-plate C or cathode circuit L) 

5 = empirical factor typical of oxide-cathode amplifier tubes 
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The several noise sources associated with the vacuum tubejmd its input 
circuit are shown in Fig. 13-2. The two generators in2

2 and in3
2 are caused 

by the tube; the generator t n l
2 is due to the input-circuit conductance. The 

P 

in\2 = thermal noise in i „ 2
2 = induced grid i „ 3

2 = shot and 
circuit resistance noise partition noise = 4kTBG; = 5(4kTBGT) =4kTBR g 2 

Fig. 13-2 (a) Schematic representation of the noise sources in a vacuum tube (pentode 
or triode). (6) Equivalent circuit. 

bandwidth B is the noise bandwidth over which the noise is being observed 
and is often largely determined by subsequent circuits. 

For many situations it is more convenient to transform the noise genera­
tor in the plate circuit over to the grid circuit so that all the noise-producing 
elements are in the same part of the circuit. This may be accomplished by 
dividing the current in3

2 by gm
2, giving an equivalent noise voltage at the 

grid which is the same as that produced by a resistor of value Req. The 
result is shown in Fig. 13-3. (Note that the actual grid connection is shown 

i „ 1
2 = 4kTBG1 i n 2

2 = 5(4kTBGr) i.„3
2 = 4kTBR.q Fig. 13-3 Equivalent circuit for tube noise with the shot-noise generator transformed into an equivalent noisy resistor fleq. 
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to the left of i? e q and that the actual grid voltage is always v\ plus the noise 
voltage appearing across 

13-3 Transistor Noise. The noise in a transistor is produced by 
several processes. In the case of an NPN transistor,1 these are (1) noise due 
to electrons going from emitter to collector, (2) noise due to electrons going 
from emitter to base, (3) noise due to electrons injected into the base and 
returning to the emitter, (4) noise due to electrons trapped in the emitter 
space-charge region and recombining with holes coming from the base, (5) 
noise due to electrons trapped in the emitter space-charge region and 

Fig. 13-4 An equivalent for the transistor including noise sources. (From E. 0. Nielsen, 
Behavior of Noise Figure in Junction Transistors, Proc. IRE, vol. 45, pp. 957-963, July, 
1957.) 

returning to the emitter after being detrapped thermally, and (6) thermal 
noise due to the ohmic base resistance r'b. 

At low frequencies, typically below a few kilocycles, an additional 
noise source due to surface-leakage effects becomes prominent. The noise 
typically varies approximately as l / /and is usually called "excess noise" or 
simply " 1 / / noise." 

The effect of all these noise sources may be represented by the addition of 
three noise generators to the T equivalent circuit. One current generator 
appears across the emitter junction, and one appears across the collector 
junction. These two generators are partially correlated. The third gen­
erator is a voltage generator in series with the ohmic base resistance and is 
uncorrelated with either of the current generators.2 Such a complicated 
equivalent circuit can be considerably simplified and still retain reason­
able accuracy up to the alpha-cutoff frequency of the transistor. 

The simplified noise equivalent circuit given by Nielsen is shown in 
Fig. 13-4, in which the noise at the emitter is represented by a current 

1 A. van der Ziel, Shot Noise in Transistors (letter), Proc. IRE, vol. 48, pp. 114-115, 
January, 1960; and A. van der Ziel and A. G. T. Becking, Theory of Junction Diode and 
Junction Transistor Noise, Proc. IRE, vol. 46, pp. 589-594, March, 1958. 

2 A. van der Ziel, Shot Noise in Junction Diodes and Transistors, Proc. IRE, vol. 43, 
pp. 1639-1646, November, 1955. 
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generator of value 
i? = 2qIEB (13-7) 

where q = electron charge 
Is = d-c emitter current, amp 

This is a current generator giving full shot noise [cf. Eq. (13-3)] in parallel 
with the emitter resistance r'e = kT/qls. 

Across the collector junction another noise current generator appears 
which is assumed uncorrelated 1 with the emitter noise generator. The value 
of the noise current produced by the collector generator is 

i? = 2qIc(l-—)B (13-8) 

where Ic = d-c collector current, amp 
a = common-base current gain (a function of frequency) 

a0 = a at zero frequency 
The collector current noise generator is not independent of frequency as the 
emitter current generator was assumed to be. At low frequencies i 2 is 
considerably less than full shot noise but increases with frequency since 
\a\ is a decreasing function of frequency. 

The remaining noise generator, vb
2, simply gives the thermal noise gen­

erated in the ohmic base resistance, 

H2 = 4kTr'bB (13-9) 

The resulting equivalent circuit is the same as that shown in Fig. 2-8 
and in Fig. 2-20 with the addition of the equivalent noise generators. Note 
that the emitter capacitance \/aar'e and the reverse transfer parameter 
nec are being neglected. If a is approximated by the expression 

1 + jf/fa 

then Eq. (13-8) may be written in terms of frequency, 

(13-10) 

1 + ( L V 
W l - a0fj 

B 

From Eq. (13-11) i 2 is seen to have a minimum value at low frequencies of 

i ? = 2qIcB (1 - «„) / -> 0 (13-12) 
1 The fact that the two generators are uncorrelated has the practical effect that the 

noise power, say at the output of the device, may be computed by calculating the power 
due to each noise generator separately and summing the two powers to obtain the true 
total power. 
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The magnitude of i 2 as a function of frequency is shown in Fig. 13-5, in 
which i 2 is seen to start increasing at a frequency somewhat greater than 
the beta-cutoff frequency, (1 — a0)fa. 

Log/^>~ 

Fig. 13-5 Frequency dependence of the collector noise generator. 

For some applications the Thevenin equivalent of the noise generators is 
more convenient. Such a circuit as is shown in Fig. 13-6 has equivalent 
noise generators of the following values, 

vb
2 = AkTr'bB 

ie
2r* 

kT\ 
— ) r'e = 2kTr'eB w 

where 

2j/c(l - a0)F(f)\Zc\2B 

V a V 1 - « o / 

(13-9) 

(13-13) 

1 + (f/fa)2 

1 
l/r'c + jcoCc 

* c 2 = 

(assuming that Ic = 

I. 

2kTa0 

re 

(1 - a0)\Zc\2BF(f) (13-14) 

E 

Fig. 13-6 Thevenin equivalent of Fig. 13-4. 
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Fig. 13-7 Equivalent circuit of the input stage of a vacuum-tube amplifier. [Adapted 
from 0. E. Valley, Jr., and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, 
M.I.T. Radiation Laboratory Series), pp. 682-694, McGraw-Hill Book Company, Inc., 
New York, 1948; and M. T. Lebenbaum, Design Factors in Low-noise-figure Input Cir­
cuits, Proc. IRE, vol. 38, pp. 75-80, January, 1950.] 

amplifier and the manner in which the signal and noise are amplified, we 
can make any desired calculations. 

Let us set out to evaluate how much signal and how much noise will be 
present in the output of an amplifier. The signal, of course, originates in the 
signal source connected to the input terminals, as does also a certain amount 
of thermal noise in the internal resistance of the source. In the first tube of 
the amplifier there is added some more noise: shot, partition, and induced 
grid noise. This first tube amplifies the signal and also any noise appearing 
in its grid circuit. In most cases the amplification is sufficient to make the 
amplified noise of the first tube much greater than the noise contributed 
by the second tube. We shall assume this to be the case in our initial 
analysis. 

The circuit to be considered is shown in Fig. 13-7, in which the tube is 
represented as shown in Fig. 13-3. For the example, a single-tuned circuit is 
shown in the grid of the first tube, although in some circumstances a double-
tuned circuit would prove advantageous. We shall want to evaluate the 

Using the representation of Fig. 13-4 or that of Fig. 13-6, we have a 
quite accurate equivalent circuit for analyzing the noise behavior from 
frequencies above a few hundred cycles up to the alpha-cutoff frequency. 

13-4 Calculation of Amplifier Noise Factor (Vacuum-tube 
Amplifier). The noise factor (or "noise figure") is a measure of the relative 
magnitudes of signal and noise powers to be expected in the output of an 
amplifier compared with these same powers in the output of an "ideal 
noise-free" amplifier. From a knowledge of the noise sources within an 
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• G. -
>GJm* 

Includes losses in L 

Fig. 13-8 Circuit for computing the in­
put bandwidth. 

bandwidth of the circuit, beeause it 
may have to fit in the circuits of the 
other stages to provide stagger tun­
ing. Then, in order to demonstrate 
the effects of matching (or mismatch­
ing) the generator impedance to the in­
put impedance of the amplifier, there 
has been shown an ideal transformer 
in the circuit; this can be approxi­

mated in practice by tapping down on the inductor L or by use of the 
double-tuned circuit already mentioned. 

The bandwidth of the input circuit can be readily computed by consider­
ing the LC circuit and the loading represented by the sum of the conduct­
ances. Notice that this bandwidth is merely that of the input circuit, not 
the over-all bandwidth B of the complete amplifier (several stages, usually) 
which determines the noise output. The equivalent input circuit is shown in 
Fig. 13-8, and the bandwidth Bx of this circuit is expressed by Eq. (13-15). 

Bi = 
Gs + (?! + Gr 

2wC 
(13-15) 

= 3 db bandwidth of input circuit only 

The bandwidth Bx can, in principle, be adjusted either by varying the 
transformation ratio m or by adding to the conductance G\. Before saying 
which is preferable, let us examine the noise situation. 

In order to combine all the noise sources directly, it is convenient to 
transform the voltage source vn%2 to a current source in parallel with 
the other currents, as shown in Fig. 13-9. The value of this current genera­
tor is 

inz2 = vn3
2(Gs + G,+ GT)2 

= 4kTBReq(Ga + + GT)2 (13-16) 

We now have all the noise sources together, and with them the signal 
source, so that some manner of comparing them can now be chosen. 
Because of the added noise sources in the first tube, the output signal-to-

Fig. 13-9 Equivalent circuit for the calculation of F. 



SEC. 4] CALCULATION OF AMPLIFIER NOISE FACTOR 273 

I 2 I 2 

Input S/N ratio i = = = = = = T r ^ 7 (13-17) 

I 
Output S/N ratio = = • s —= = 

• 2 I • 2 I • 2 ! • 2 
lns 1 ln\ ~ T £ N 2 " T <-n3' 

±kTB[Gs + G X + 5GT + Req(Gs + Gx + GT)2] 

(13-18) 
A input S/N ratio 

Noise factor 1 F = (13-19) 
output S/N ratio 

G\ 5 G T RPQ r, 

= 1 + _ + — + - 5 (G, + Gx + Gr)2 (13-20) 
G; (J, (jrs 

(assumes that T„ the source temperature, is 2 9 0 ° K ) . 
Notice that the minimum value of the noise factor is unity, corresponding 

to an amplifier in which there are no additional noise sources beyond the 
generator. Anything that can be done to decrease G\, GT, or Req will im­
prove the noise factor. The latter two are the principal noise contributors, 
and they depend upon the choice of tube. 

Once the tube choice has been made, what about the circuit design? For 
instance, what about the value of transformation ratio ml The noise factor 
is a function of m, since Gs is G-m/m2, and the source impedance (conduct­
ance) Gin is usually fixed in any situation, rather than the transformed 
conductance G s. One can find an optimum value of m by determining the 
minimum noise factor F in Eq. (13-20) in the usual way of differentiating 

1 On the assumption that the amplifier is linear, this is the same as the noise-factor 
definition given in IRE Standards on Methods of Measuring Noise in Linear Twoports, 
1959, Proc. IRE, vol. 48, p. 61, January, 1960. 

noise ratio will be worse than at the input; therefore it would seem reason­
able to compare the signal-to-noise ratio at the input of the amplifier with 
that at the output. If the input source is at the standard temperature of 
2 9 0 ° K (which approximates room temperature), the ratio of input signal-
to-noise ratio to output signal-to-noise ratio is defined as the noise factor. 

Since the noise is a measurable quantity only in a mean-square sense, let 
us take as our signal-to-noise ratio S/N the square of the signal current 
divided by the mean-square noise current. Then from the preceding defini­
tion of noise factor we obtain 
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with respect to m and equating the derivative to zero. For minimum noise 
factor 

Gin ^ea 
Wlopt — 

LG, + 5GT + R^iGi + GTf (13-210) In some cases the value of the source conductance itself may be altered to 
provide the proper value for minimum noise factor. The optimum source 
conductance is 

Gt + 5GT 

<w = * /—£ + (Gi + °r) (13-216) 
Re 

i-eq Both Eqs. (13-21a) and (13-20) may be simplified for the special case of 
negligible input circuit loss (Gi ~ 0) and Re(lGT <<C 5. If we define a new 
parameter G„ = 5Gr which varies as frequency squared, we may rewrite 
Eq. (13-216) in the simpler form 

JO \ rteq 
In this equation Gn(J0) is the value of Gn at the frequency fo, while fx is the 
operating frequency. With the same approximations the optimum value of F may be found from Eq. (13-20) by substituting G>,oPt for Gs. The result­
ing minimum value of noise factor is found to be 

2/V ^ m i „ ^ 1 + VfleqGn(/0) (13-20o) 
fo 

From Eq. (13-20a) it is seen that the minimum noise factor will increase 
approximately linearly with operating frequency, although the equation 
must be used with care both at very low and at very high frequencies. 

Table 13-1 summarizes the noise parameters for some receiving tubes. A 
small value of ReqGn is, of course, desirable to obtain a low noise factor. 
Note that both the 7077 and 416A are relatively special, close-spaced 
microwave triodes which give exceptionally low Re<iGn. 

The value of m to give minimum noise factor may not be the proper 
value for bandwidth, as determined from Eq. (13-15), or even the proper 
value to give maximum signal voltage at the grid of the tube; i.e., for maxi­
mum signal voltage at grid 

/ Gi„ 

- = (13'22) 

Accordingly, some compromise must be made, the decision usually rest­
ing upon which performance feature is the most important. Usually the 
maximum grid voltage is of the least consequence, because gain added later 
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Table 13-1 * 

Tube type 3m, 

îmhos ohms 
On at 100 Mc, 

jumhos 

416A 50,000 ~100 106 0.011 
6201 5,500 600 400 0.238 
6688 18,500 120 1,440 0.172 
7077 9,000 350 170 0.061 
6AK5 (pentode) 5,000 1,880 670 1.260 
6AK5 (triode) 6,600 385 670 0.258 
6AM4 9,800 260 740 0.193 
6AN4 10,000 250 680 0.171 
6BC4 10,000 260 670 0.173 
6BC8 6,200 600 400 0.238 
6BK7A 9,300 240 640 0.155 
6BN4 6,800 420 480 0.203 
6BQ7A 6,400 435 360 0.156 
6BZ7 6,800 490 430 0.212 
6CE5 9,000 650 1,480 0.964 
2CY5 8,000 525 790 0.415 
PC86 170 880 0.150 

* Unless otherwise indicated, all pentodes are triode-connected. 

can make up for the inefficiency in the first stage. The noise factor, on the 
other hand, is determined at the input, and later stages can do nothing 
to improve it. 

The problem of greatest practical difficulty is that occurring when the 
chosen value of m to give minimum noise factor according to Eq. (13-21a) 
yields a bandwidth which is too narrow. The designer must then choose 
among three possible alternatives: (1) increase Gs by changing m, (2) in­
crease Gi by adding shunt resistance or by introducing feedback to raise 
the input conductance of the tube, (3) or adopt a different circuit al­
together. The first two alternatives increase the noise factor above the 
minimum value, although the first one is usually less harmful than 
the second because the F as a function of Gs has a broad minimum. The 
third alternative is best; the most commonly used alternative circuit is 
the double-tuned one, which, for the same conductance Gs, will yield up to 
twice the bandwidth of the circuit in Fig. 13-7. 

The noise associated with the second stage in the amplifier will make an 
appreciable contribution to the over-all noise factor if the gain of the first 
stage is not high. A given situation can be evaluated by transforming the 
noise of the second tube backward through the first tube to the input grid 
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circuit as was done with the plate shot noise. Thus the mean-square noise 
current in the grid circuit of the second tube can be divided by gm

2 to give 
an equivalent mean-square grid voltage, which in turn can be transformed 
to a current source for adding in with the other current generators. An 
alternative approach to this contribution of the second stage is that of 
computing the over-all noise factor of two networks in cascade, by using 
relationships presented in Chap. 14. 

13-5 Noise Factor of a Transistor Stage. The noise factor of a 
transistor stage may be found in a manner similar to that used to find 
the noise factor of a vacuum-tube input stage. The equivalent circuit which 

Fig. 13-10 Circuit for calculation of F for a common-base stage. (NOTE: V0 is the 
open-circuit output voltage.) 

will be analyzed is shown in Fig. 13-10 and is the same as that of Fig. 13-6 
with a signal source added. The circuit is shown in the common-base con­
nection, but, as will later be shown, the results obtained are the same as for 
the common-emitter connection. The method to be used is, briefly, to 
calculate the mean-square open-circuit voltage (both signal and noise) 
appearing at the output of the transistor. The power delivered to the load 
ZL is then a constant times this mean-square voltage—the constant de­
pending only upon ZL and the output impedance of the transistor. (The 
noise in ZL is assumed small compared with the amplifier noise currents.) 

A convenient way to make the calculation is to compute the mean-square 
output voltage caused by each generator in Fig. 13-10. To make the calcula­
tion, an arbitrary polarity must be temporarily assigned to the noise genera­
tors so that their contribution can be properly computed. As an example, 
assume that the generator vb is positive on top. The current in the input 
loop due only to vb is then 

vgn = ve = vc = 0 (13-23a) 

The open-circuit output voltage due to vb is then 
_ —vb(aZc — Rg — r'e) 

V°~ Rg + r'b + r'e 
(13-236) 
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and the mean-square value of the output voltage is 

vb
2\aZe - R t - r'e12 

2 - -^1 (13-23c) 
(Rg + r'b + r'e)2 

In a similar manner, the mean-square voltages due to vgn
2, ve

2, and v2 may 
be found and added together to give the total v2 (note that all the genera­
tors are uncorrelated). 

7* - ( ^ ? | « Z , + R I P + I7|«Z« + rif 
W|. 2 . - , ; - f t ,|0 ( B t + f : + r l ) , + . ? (13-24) 

This equation may be simplified by noting that usually Zc >?> r'b and 
Zc 55> Rg + r'e. Therefore Eq. (13-24) may be approximated by 

V2 = (^}\aZc\2 +^2\aZc\2 + rf\aZc\2)-- ) + V2 

(Rg + r'e-r- rby 
(13-25) 

We may now rewrite the definition of noise factor to use more conven­
iently here. 

O S / A O IN 
F = (13-26) 

(S/N)out 

(power ratio at T80urce = 290°K). The output noise power into ZL from 
the stage is 

V2 — 
where Z0 is the output impedance looking into the collector and base 
terminals. Therefore, if Vog is the open-circuit output voltage due to the 
source Vg, then the output S/N is 

Vog
2Kx GVg

2Kx 

v0
2Kx v0

2Kx 

GV2 

(13-28) 
Vo2 

The gain G is the square of the open-circuit voltage gain. The input S/N is a 
similar ratio of voltages squared. 

Vg
2K2 Ve

2 

S/N* = = ^ = =4 (13-29) 
Vgn A 2 Vgn 
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Hence the noise factor may be written as 
[CHAP. 13 

GVg'/vcT 
(13-30) 

The quantity Gvgn
2 is simply the first term in Eq. (13-24) since this term is 

the open-circuit voltage due to the generator vgn
2. Hence the noise factor 

is obtained by dividing Eq. (13-24) by its first term, resulting in 

F = 1 + 
Vb 

• + 
Vc2(Rg + ri + r'e) 

v2\aZc 

,'\2 
(13-31) 

If the values previously found for each of these generators are incorporated 
into this equation, we obtain the desired equation for common-base 
noise figure. 

Fb = 1 + 
re 

.'\2 ri, (1 - a0)(Rs + r'e + ri) 
+ ~ H 2Re R. 2aor'eRg 

1 + ( f y 
\faVl - aj (13-32) 

The noise factor as given also applies for the common-emitter transistor 
connection, because the noise factor depends only upon a set of open-circuit 
voltages [Eqs. (13-30), (13-31)] . The open-circuit output voltages do not 
depend upon whether the emitter or base terminal is considered common. 
The output impedance depends upon the common terminal; hence the 
actual power delivered to a given ZL does depend upon the circuit configura­
tion. The common-collector noise factor is slightly different (see Prob. 
13-7). 

The noise factor as given by Eq. (13-32) may be plotted as a function of 
Rg for typical values of re, r'b, and a0, as shown in Fig. 13-11. The noise 

F, dbf 

6 

4 

2 

.̂ Calculated /=500 kc 
(Data from Nielsen) 

100 500 1 K 5K 

Fig. 13-11 Noise factor as a function of source resistance for a typical common-base or 
common-emitter stage. 
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K. 3 2a0r« 

We differentiate Eq. (13-33) with respect to Rg and set the derivative 
equal to zero. 

dF -Ki 2Rg(K2 + R.) - (K2 + Rg)2 

- - = —2- + K3 — — ^ — ^ — = 0 (13-
6Rg Rg Rg 

Solving for the Rg to obtain the minimum value of F (= Fmin), we get 

#8.opt = J K 2
2 + ^ | (13-35) 

Thus the optimum value of source impedance is seen to decrease with 
increasing frequency. The optimum value of Rg at low frequencies 
(/ "SC/aVl —

 a) 1S given by the expression 

, , (r'e/ri,)2 + 2r'e/r(, 
Rg,oPt = ri 1 + (13-36) 

1 — a 
This value of flg is near the input impedance of the transistor in the 
common-emitter configuration; hence, nearly the maximum available gain 
is obtained when the optimum source resistance for noise is used. In the 
common-base configuration the optimum source resistance is the same, but 
the source to give maximum available gain is much lower. Hence using 
Rg.opt in a common-base stage gives a lowered stage gain and makes the 
noise contribution of the following stage important. A similar mismatched 
condition also exists in using a common-collector stage with Kg ,o pt except 
that the source giving the largest available power gain with a common-
collector stage is greater than Rg,opt- Consequently, the common-emitter 
stage is the most useful as an input stage because the largest stage gain can 
be achieved with the proper source resistance for a low noise factor. 

factor has a definite minimum for a particular value of Rg, as is evident from 
the figure. The optimum value of Rg may be found more easily if the noise 
factor is expressed in the form 

Kt (K2 + Rg)2K3 

F = 1 + — + — - (13-33) 
Rg Rg 

where K\ = n -\— 

2 

K2 = rb + r'e 

(1 - «o)[l + (///„ V l - a 0 ) 2 ] 
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^MIN = L + 2 ^ 3 ( ^ 2 2 + (13-37) 

The shape of the curve of i^IN as a function of frequency is shown 
approximately in Fig. 13-12. The noise factor is constant in the medium-
frequency range but begins to increase at frequencies of the order of 
/ „ V ' l — a0. The dashed curve showing an increase in F at low frequencies 
indicates the effect of 1// noise, which is not included in the noise equivalent 

N-3 d b / octave 6db/octave 

(500 cps to 2 kc / V l - « 0 

typical) L o g , - * . " 

Fig. 13-12 Typical behavior of transistor noise factor vs. frequency. 

circuit. The frequency at which 1 / / noise becomes important unfortunately 
varies widely, often even among transistors of one type. 

Some general conclusions may be drawn concerning the operation of 
transistors where low F is required. The use of Rg,oPt is desirable although 
the minimum in F is a broad one as Rg is varied. The value of Rg,opt may 
by altered by adjusting r'e by changing IE- If high values of source imped­
ance must be used, then very low values of IE may be valuable;1 however, 
the lowest possible value of F is usually obtained with Rg in the range of 
500 to 2,000 ohms. In general, a transistor with small (1 — a0) is desirable, 
and if operation at high frequencies is necessary, a high / „ . For operation at 
very low frequencies selection of an optimum transistor is useful to minimize 
1/f noise. So-called "low-noise" transistors may not have low 1// noise 
unless they are specifically selected for this frequency range. Feedback 
arrangements including the common-collector connection have very little 
effect on changing the optimum source impedance for low F, although the 
feedback may have great effect on the input impedance of the amplifier. 
The noise figure as predicted by the preceding equations is usually slightly 
lower than that actually realized, as is shown in Nielsen's article. Typically 
the error in i^MIN is of the order of 1 to 2 db. 

1 A. E. Bachman, Rausharmer Transistorverstarker mit hoher Eingangsimpedanz, 
Arch. Elek. Uebertragung, April, 1958, pp. 331-333. 

If the source impedance is given the optimum value, as in Eq. (13-35), 
then the value of î MIN is 
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PROBLEMS 

13-1. A multistage amplifier has a 6AK5 pentode in the first stage, as shown in Fig. 
P13-1. The center frequency of the amplifier is 100 Mc, resulting in the following 
parameters: 

Gr = 130 /.mhos JfJeq = 1,900 ohms 

gm = 5,000 jumhos 

Cin = 8 pf (including wiring capacity) 

Gi = 0 
a. Select a value of m so that the input-circuit bandwidth is 20 Mc. Assume that the 

source resistance is 50 ohms. 
6. Compute the percentage of total noise power at the amplifier output due to each of 

the following: (1) thermal noise from the source; (2) shot and partition noise; (3) induced 
grid noise. (Assume that all noise originates in the source and first stage.) 

(ideal) 
Fig. P13-1 

c. Find the noise factor of the amplifier (in decibels). 
d. What is the minimum F which could be achieved, disregarding bandwidth? 
e. If the maximum Q which can be attained in an inductor of a given size is 100, what 

increase (in decibels) in the noise factor found in (c) and (d) results? 
13-2. What is the minimum noise factor which may be obtained with the pentode of 

Prob. 13-1 if the frequency of operation is 10 Mc and the maximum attainable inductor Q 
is 250? By how many decibels may the noise factor be decreased if the pentode is triode-
connected and the source again adjusted for optimum noise factor? Assume that the 
6AK5 triode noise parameters are the same as for the pentode except that = 385 
ohms. (Do not forget that Gr in Prob. 13-1 is specified at 100 Mc.) 

13-3. To show that the noise factor has a relatively broad minimum at G s , o pt, compute 
Fmin for a 6AK5 pentode at 30 Mc. Also compute F for source conductances of 2 6 s , o p t 

and ]4.Gs,apt- Roughly plot the resulting F's as a function of Gs. (Make use of the 6AK5 
data from Prob. 13-1.) 

13-4. Show that the noise figure of a triode in the grounded-grid connection is 
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13-5. Assume that a common-emitter connected transistor has the following param­
eters while operating with IE = 1 ma and VCE = 3 volts: 

Find the optimum source impedance and minimum noise factor for this transistor 
operating at 300 kc. 

13-6. Assuming that the theoretical relationship between IE, the d-c emitter current, 
and re holds (see Chap. 2), plot a curve of minimum noise factor versus IE and a curve 
giving the source resistance for this minimum noise factor versus IK- Assume that r'b is 
independent of IE and equal to 100 ohms; ao/(l — ao) is given for a particular unit by 
Fig. 2-10. Plot the results on log-log graph paper for the range 100 n& g IE g 10 ma. 

13-7. Show that the noise factor in the common-collector configuration (Fc) is given by 

25 ohms r'c = 8 megohms 

100 ohms fa = 5 Mc 

0.98 

<*o(l — ao' Oil + ( / / / , V l - «o) 2 l (^ + n)2 

2r'eRe[l + (f/fa)2] 

Discuss the behavior of Fc as a function of frequency. 



14 
Some General Noise-factor 

Relationships 

14-1 Available Power and Available Power Gain. In the last 
chapter there was derived a figure of merit which we called the noise 
factor. It was defined in a reasonably obvious fashion from a comparison 
of mean-square noise and signal currents. There is a more general defini­
tion, based on the concept of "available power," which is very useful when 
it comes to the analysis or measurement of systems which cannot be re­
duced to such simple circuits as those of Chap. 13. 

Available power 
= V2/4ic" 

Available power 
= J2/4G 

Available noise 
power = kTB 

Fig. 14-1 Available power from various sources. 

Available power from a generator or active network is a measure of the 
active portion of such a network, or its energy source. It is an alternative 
parameter to the more frequently used open-circuit voltage or short-circuit 
current. It is the power that would be delivered to a matched load and 
hence is the maximum power available from the generator, or simply the 
"available power" (see Fig. 1-1). Examples are given in Fig. 14-1. 

One feature of the available-power concept is the simple expression for 
thermal noise, always kTB regardless of the value of R or G. It might be 
well to point out, however, that this power could not be measured, since 
the matched load (also R or G) would be generating an equal amount of 

283 
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Vi2 

Pi = — 

4P 0 

2 
(14-1) 

thermal noise—if it were at the 
same temperature—and hence the net 
power flow would be zero. If the 
load were an idealized noise-free re­
sistor, then kTB could flow to it. 

Fig. 14-2 Circuit for definition of Available power is a perfectly 
available power gain. practical quantity, however, for sig­

nal sources, and indeed noise sources 
if the noise level is high. In fact, at microwave frequencies the avail­
able power can readily be measured by means of a matching network 
and a power-measuring device such as a bolometer, whereas open-circuit 
voltage or short-circuit current are not only impossible to measure but 
even ambiguous to define (in waveguides, for instance). 

Once we have defined available power, we can also introduce the term 
available power gain. If a generator has an available power Pi and to it 
is connected an amplifier, there will be a new available power at the output 
terminals of the amplifier (see Fig. 14-2). The ratio of the output avail­
able power P2 to the input available power from the generator Pi is de­
fined as the available power gain g 

Available power Pi from generator 

Available power P 2 from amplifier 

A P2 

Available power gain g = — 
Pi 

Notice that this kind of gain does not depend upon the load connected 
to the amplifier, because it is a measure of the available rather than the 
actual power. Moreover, the input resistance of the amplifier does not 
appear explicitly, although it does influence the magnitude of V2 for a 
given Vx. 

The definition of available power gain can be contrasted with other gain 
definitions which are commonly used.1 These are illustrated in Fig. 1-1. 

14-2 Noise Factor in Terms of Available Power. The quantities 
available power and available power gain are remarkably useful in the 
manipulation of noise-factor relationships and are the key to successful 
circuit design for low noise. Let us redefine the noise factor in the way 
that it is generally given by workers in this technical field. 

' I R E Standards on Electron Tubes: Definitions of Terms, 1950; F. E. Terman and 
J. M. Pettit, "Electronic Measurements," 2d ed., pp. 311-322, McGraw-Hill Book 
Company, Inc., New York, 1952. 
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(available input signal)/(available input noise) 

(available output signal)/(available output noise) 

output S/N of ideal amplifier 

output S/N of actual amplifier 

285 

(14-2) 

(14-2a) 

The evaluation is customarily restricted to the case where the only noise 
at the input is thermal noise in the signal source resistance; hence 

F = 
(available input signal)/kTB 

(available output signal)/(available output noise) 

(available output noise) / g 
kTB 

(14-3) 

where 9 = available power gain 
T = standard temperature, usually 290°K 

The utility of the new definitions is apparent in Eq. (14-3), where the 
numerator can be interpreted as an equivalent available noise at the input, 
which is to be compared with kTB to define the noise figure. Moreover, 
the equation suggests a possible measurement technique. We could meas­
ure the available output noise with a matched mean-square instrument; 
we could measure g at some convenient level with a conventional signal 
generator, and we could compute kTB. 

If the new definition of F in Eq. (14-2) is applied to the circuit of Chap. 
13, the same relationships used there in Eqs. (13-17) to (13-20) would 
result. 

14-3 Noise Factor of Networks in Cascade. Finally, a unique and 
valuable feature of the new definitions is a systematic technique for han­
dling the noise evaluation of two or more networks in cascade. Suppose 
that we have two amplifiers (or other networks, for that matter) con­
nected in cascade, as in Fig. 14-3, with noise figures and available power 
gains (or losses) which have been separately evaluated in accordance with 

Network a Network b 

!» 
Network a Network b Network a Network b 

• kTB •N. -N„f, 

Fig. 14-3 Circuit for determining the noise factor of cascaded networks. (The rec­
tangular bandwidth B either is the same for both networks or else is determined by net­
works following a and b.) 
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Na = FaSakTB 

Nab = FaiSaSbhTB 
Consider network b tested separately (Fig. 14-4). 

N/9b 

or N = FbQbkTB 

(14-4) 

(14-5) 

(14-6) 

(14-7) 

Same Z as the 
output of o, but 

only thermal noise- Network 6 Network 6 Network 6 

-kTB -N 

Fig. 14-4 Determination of noise output of second stage alone. 

On the premise that noise powers add, 

Portion of N due to source = £bkTB (14-8) 

Portion of N due to noise originating within network b = N — QiJcTB 

= FbQbkTB - QbkTB 

Thus in Fig. 14-3 

Nab = NaQb + (Fb - l)QbkTB 
T • • • 

Source Noise 
noise from 
for 6 within 6 

Nab = FaSaQbkTB + (Fb - l)QbkTB 

Combine Eqs. (14-10a) and (14-5), 

FabQaSbkTB = FaQaSbkTB + (Fb - l)$bkTB 

Fb - 1 

(Fb - mbkTB 
(14-9) 

(14-10) 

(14-10a) 

'ab Fa + (14-11) 

Eqs. (14-1) and (14-3). The question is: What is the noise figure Fab of 
the combination as shown in Fig. 14-3? 
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This relationship is an important one. It shows that the over-all noise 
figure is essentially that of the first network if the available power gain of 
that network is high. If it is not high, the relationship gives the contribu­
tion of the noise figure of the second network, namely, the second term on 
the right-hand side of the equation.1 

For three networks in cascade, the over-all noise figure has a similar 
expression, F — 1 F - 1 

Fabe = Fa + — + (14-12) 
9a 9a9& 

14-4 NOISE IN TERMS OF EQUIVALENT TEMPERATURE. The emphasis 
in this treatment of amplifier circuit noise is appropriate to those applica­
tions where the signal source is at room temperature, which is conveniently 
taken to have a standard value of 290°K. In some applications, such as 
receivers for radio astronomy, the source noise is at a much lower tem­
perature. It is then more common in making quantitative comparisons of 
amplifiers to use equivalent input noise temperature 2 Te, which is related to 
noise factor F by 

Te = 290(F - 1) °K (14-13) 

An ideal noiseless amplifier (F — 1, or 0 db) would have Te = 0°, while an 
amplifier with F = 2, or 3 db, would give Te = 290°K. 

14-5 EQUIVALENT NOISE BANDWIDTH. The assumption of a passband 
of rectangular shape and width B is neither practical nor necessary for any 
amplifier in whose output noise is observed. Thermal noise from a resistor 
connected to the input, for example, is observed at the output as the inte-
g r a t i 0 n ° f M W ) df (14-14) 

where df = incremental bandwidth 
g ( / ) = available power gain at frequency/ 

/•ao 

Available output noise (power) = kT I Q(f) df (14-15) 
Jo 

R I R 
/ c 

LSCFO) Jo c 

= kT 9(f) df S(/o) 

B 

kTBQ(f0) (14-150) 

WHERE B = EQUIVALENT NOISE BANDWIDTH = / G(/) df (14-16) 
9(/o) Jo 

1 The derivation above follows that of H. T. Friis, Noise Figures of Radio Receivers, 
Proc. IRE, vol. 32, pp. 419-429, July, 1944. 

2 IRE STANDARDS ON METHODS OF MEASURING NOISE IN LINEAR TWOPORTS, 1959, SEC. 5. 
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The equivalent noise bandwidth can be thought of as the width of an 
equivalent rectangular passband having a height 9(/o) and the same total 
output noise as the actual passband (see Fig. 14-5). 

The equivalent noise bandwidth is approximated fairly well by the 3-db 
bandwidth in most practical cases. As an example, consider a maximally 
flat triple, where the voltage gain has been shown to vary with frequency 
(normalized) as l / \ / l + x 8. The 3-db bandwidth is 2.0. The available 

Actual 
band shape 

S(4) 

Equivalent 
noise band 

— B 

/-*- fo f-* 

Fig. 14-5 The meaning of equivalent noise bandwidth. 

power gain can be expected to vary as the square of this voltage gain, and 
thus 

Noise bandwidth 

3-db bandwidth 

Since g(0) = 1 and g(x) is even, 

J —t 

[g(.T) dx] /g (0 ) 

(14-17) 

3-db 

2 / g (z ) dx 

2 

dx 

o 1 + xb 

T / 6 

sin (ir/6) 

; 1 

1.045 

(14-18) 

On the other hand, the noise bandwidth of a single, single-tuned stage 
is found to be quite different from the 3-db bandwidth; that is, -Bnoise/-B3-db 
= 7r/2. This ratio approaches unity, however, as the number of stages, 
either staggered or synchronously tuned, becomes large. 

14-6 Low-noise-factor Circuit Design: The Cascode. In the quest 
for low-noise amplifiers for systems such as radar receivers, one rather re-
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B 

Fig. 14-6 The cascode amplifier (grounded cathode followed by grounded-grid stage). 

The incentive for using triodes comes from their low noise compared 
with pentodes, owing to the absence of partition noise. Thus a 6AK5 pen­
tode can have an RecL in Eq. (13-4) of 1,880 ohms, but when the same tube 
is connected as a triode, the 7? e q is only 385 ohms. The minimum noise 
figure when used as a pentode turns out to be 1.85 (2.7 db) at 30 Mc, 
whereas the same tube in the double triode circuit above will give a noise 
figure of 1.35 (1.3 db) at the same frequency. This might seem like a 
small improvement,2 but it represents a substantial number of kilowatts if 
the high-powered transmitter is thereby effectively increased in output 
power by 37 per cent. 

The trouble with triodes at radio frequencies is that the input conduct­
ance can become negative, thus leading to possible oscillation. This diffi­
culty diminishes as the voltage amplification between plate and grid cir­
cuits is made small. Yet we should like the gain of the first tube to be 
high, so that noise contributions of subsequent tubes will not impair the 
noise figure. The apparent dilemma is neatly resolved by careful attention 
to the distinction between the voltage amplification, which determines the 
input conductance, and the available power gain, which determines the 

1 H. Wallman, A. B. Macnee, and C. P. Gadsden, A Low-noise Amplifier, Proc. IRE, 
vol. 36, pp. 700-708, June, 1948. 

2 If compared for equal bandwidths, e.g., 12 Mc, centered at 30 Mc, the noise figures become; pentode, 3.3 db; cascode, 1,35 db. 

markable circuit design has evolved.1 It uses two triodes in the "cascode" 
arrangement shown in Fig. 14-6 (d-c connections are omitted). The gen­
eral noise-factor relationships which have been presented in the earlier 
sections provide the means for demonstrating the effectiveness of the 
circuit. 

The capacitances are usually those provided by the tubes plus wiring. 
Resistor (?i represents only losses; the bandwidth is determined primarily 
by the generator resistance, tapped down on Lj as needed. Resistor G2 is 
provided entirely by the very low input resistance of the grounded-grid 
triode of stage 2. 
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OA i W \ o5 
® <C Available power /̂ \ T7 Available power 

-oA '
 : OB 

Fig. 14-7 Available powers in the circuit of Fig. 14-6. 

noise figure. It is perfectly possible for the latter to be high and the former 
to be low! Voltage amplification A-A to B-B is 

R 
A = w p ' (14-19) 

where MI = amplification factor of tube V~i ( = 30) 

rPi = plate resistance of V~i ( = 4,500 ohms) 
R2 = l/G2 = l/srm2 ( = 150 ohms) 

9,m2 = transconductance of V2 ( = 6,670 jumhos) 
Thus A = [(30)(150)]/(150 + 4,500) = 0.967 for the example. Available 
power gain A-A to B-B (see Fig. 14-7) is 

n (nVg)2/irpl W./{Gt + Gr)\3/Arpl 

S l - ~ U m r 7 7 7 i ^ ( 1 4 - 2 0 ) 

= for G.» Gx (14-20o) 

G3rPi 

For a triode-connected 6AK5 at 30 Mc, 

Gi = 10 ^mhos /3 = 5 

GT = 12 /wnhos Req = 385 ohms 
Therefore the optimum Gs computed as in Eq. (13-21) is 426 Mmhos (2,350 
ohms). Accordingly 

(30) 2 

Si = —4 = 470 
426 X 10~ 6 X 4,500 

Thus the available power gain 9i is high, even though the voltage ampli­
fication A is so low that the first stage will be entirely stable. 

The noise figure of the first stage can be computed as in Eq. (13-20), 
GT being taken as 12 /mahos at 30 Mc. The result proves to be 

Fi = 1.35 (1.3 db) 

From a formula which will not be derived here but which can be found in 
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the literature,1 the noise figure for the second stage, where the triode has a 
grounded-grid connection, has the following calculated value : 

F2 = 3.74 (5.8 db) 

The over-all noise figure Fi2 can now be computed by using Eq. (14-11). 

F2 - 1 
F12 = Fx + 

3.74 - 1 
= 1.35 + 

470 

= 1.35 + 0.006 

= 1.36 

This over-all noise figure is contrasted with 1.85, which would be ob­
tained if a pentode were used as an input stage. 

14-7 Comparison of the Cascode with a Single-pentode Stage. 
It is pertinent to ask how the over-all available power gain would com­
pare for the pentode as opposed to the double triode. The output ter­
minals are those labeled C-C in Fig. 14-6, and included as part of the sec­
ond stage is the conductance G3. The value of (?3 will influence the value 
of the available gain; we shall use a G$ of 500 /anhos (2,000 ohms), chosen 
by Wallman, Macnee, and Gadsden to meet the particular bandwidth 
requirement of the circuit L3, C3, G 3 in their application. For this G3, the 
over-all available gain is 

Pentode 9 2* 300 

Double triode 9 ^ 200 

In either case, the available power gain is sufficiently high to make negli­
gible the noise contributions of later stages. 

Curiously enough, the available power gain of the two triodes is less than 
that of the first triode alone. The available power gain of a grounded-grid 
stage is always low, and especially so if there is a high load conductance 
(G3 in this case). Hence the available power gain of the second stage is 
actually less than unity, but the over-all gain is still high enough. 

Alternative double-triode configurations have been devised, but this one 
remains the most effective for operation at a fixed frequency. Other ar-

1 Wallman, Macnee, and Gadsden, op. cit, p. 704, eq. (23). See also G. E. Valley, Jr., 
and H. Wallman (eds.), "Vacuum Tube Amplifiers" (vol. 18, M.I.T. Radiation Labora­
tory Series), pp. 632-635, McGraw-Hill Book Company, Inc., New York, 1948. 
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rangements may prove more practical for variable-frequency operation, as 
in a television receiver or converter.1 

Sometimes a neutralizing inductor is incorporated between plate and 
grid of Vi in Fig. 14-6. Neutralizing is not needed to prevent oscillation, 
as usually required in tuned radio-frequency power amplifiers, but instead 
the purpose is to adjust admittances to secure minimum noise figure. As 
described by Wallman, Macnee, and Gadsden, an improvement of 0.2 db 
can be achieved at 30 Mc, and as much as 2.5 db at 180 Mc. 

PROBLEMS 

14-1. One way to connect a pair of triodes which would provide stability against 
oscillation would be to load the plate of the first triode with a resistance equal to the 
cathode input impedance of the grounded-grid stage of Pig. 14-6. Then the following 
stage could also be a grounded-cathode stage, as shown in Fig. P14-1. The gain of the two 
stages would then be identical with the gain of the two stages connected in cascode. To 
show that this connection is not as good as the cascode connection from a noise stand-

B 

Fig.P14-1 

point, calculate the following. Use the tube parameters and any other pertinent data 
given in the chapter. 

a. Using the value of Gs which gives a minimum noise factor for the input stage, 
calculate the available power gain of the first stage (up to the point B-B'). 

b. Calculate the noise factor of the second stage. 
c. Calculate the over-all noise factor. 
d. Try to explain in physical terms why the noise factor you obtain in (c) is worse than 

that calculated for the cascode. (HINT: YOU might consider the noise generated by the 
second tube in the two circuits.) 

14-2. An amplifier is fed from a 50-ohm source some distance away through a slightly 
lossy cable, as shown in Fig. P14-2. The amplifier is designed to be operated from a 
50-ohm source and therefore is being fed from a proper impedance even though there is 
an evident mismatch at the receiving end of the line. You are to find the noise factor of 
the system by using the principles of Sec. 14-3. First you are to find the available power 
gain and noise factor of the transmission line itself. (SUGGESTION: Consider the Thevenin 
equivalent of the transmission line and matched source, and then use the basic defini-

1 R. M. Cohen, Use of New Low-noise Twin Triode in Television Tuners, RCA Rev., 
vol. 12, pp. 3-25, March, 1951. 
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tions of noise factor and available power gain.) With these characteristics of the line, the 
over-all noise factor may be calculated directly. 

'50Q 

Z n = 50a,6DBLOSS* 

- 5 X / 8 -

*UNDER matched CONDITIONS 

Fig. P14-2 

AMPLIFIER 
F = 3DB 

(FOR 5 0 H SOURCE) 
R, = 1 0 0 8 

14-3. Show that the 3-db bandwidth and noise bandwidth become the same for 
maximally flat amplifiers if the number of staggered stages is allowed to increase with­
out limit. 

14-4a. Derive an integral equation which gives the average noise factor F if the 
noise factor F is known in the narrow band df and if g is known as a function of frequency. 
Check your result with Eq. (15-17). 

6. In some practical situations F(j) and g (/) are available only in graphical form from 
experimental data. Explain how you would apply your equation from (a) to obtain F 
from a plot of F(f) and g(/) versus / . 

c. In the special case where F(J) is a constant across the passband, as is true if the 
input circuit has a much wider passband than the rest of the amplifier, show that 
the output noise from the amplifier is simply N0 = F(fo)kTBnA(fo), where A{f0) is the 
transducer gain at the center frequency and Bn is the noise bandwidth of the entire 
amplifier. 



15 
Amplifier Measurements 

A major purpose of the book has been a presentation of advanced design 
concepts and techniques which are especially powerful in the design of 
high-performance amplifiers, i.e., amplifiers which are intended to be oper­
ated at extremes of high gain, large bandwidth, high frequencies, fast 
transient response, low noise factor, etc. Such demands on design are 
accompanied by similar demands on measurement techniques in order to 
verify the design results and, earlier, upon measurements on the individual 
circuit components in order to provide the element values which go into 
the design formulation. This chapter therefore provides some selected 
measurement techniques which will help assure the successful achieve­
ment of the high performance made possible by the design techniques. 

It is expected that the reader is already familiar with basic measure­
ment procedures described in various reference texts.1 

Measurements may be complicated by the usual problems of high-
frequency measurements plus problems unique to high-gain amplifiers. 
For example, a measurement so seemingly simple as the measurement of 
the d-c bias on one stage of a 60-Mc i-f amplifier with a nominal gain of 
100 db can lead to erroneous results. If the voltage is read when the 
amplifier shield cover is opened to insert the voltmeter leads, the reading 
will probably be wrong because of regeneration in the amplifier. Even 
bringing the voltmeter leads out with the shielding in place may not suffice 
unless the leads are carefully placed physically and properly decoupled. 
Consequently special care must be taken to ensure that the amplifier is 
truly operating normally when measurements are taken, or one may falsely 
condemn a design which in reality is good. 

15-1 Measurement of R, L, and C. The standard measurements of 
passive elements used in an amplifier are covered by many texts, but their 

1 See, for instance, F. E. Terman and J. M. Pettit, "Electronic Measurements," 
2d ed., chap. 8, Amplifier Measurements, McGraw-Hill Book Company, Inc., New 
York, 1952. 
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use in wideband amplifiers is greatly influenced by the "impurities" in 
the actual realizations of an "ideal" R, L, or C. Consequently the measure­
ment of the elements should take into account the imperfections. Fig­
ure 15-1 shows the simplest representation of a "resistor," "capacitor," 
and "inductor" valid over a reasonably wide frequency range. 

The resistor (Fig. 15-la) is contaminated by a shunt capacitance which 
reduces its impedance at high frequencies. The capacitor typically is 
about 0.6 pf for a 3^-watt carbon 
resistor. Special constructions make ? 
possible resistors with C ~ 0.02 pf.1 , | - S \ 
The value of R is to some extent a I [ 1, ! 
function of frequency and may be R> Z^C ,:'r i 

? _ 
X 

J . 
L$ 

1 

*I 
1 

> > 
> 

K > ; •I 

•-— 6 

--O
 

(6) (c) 

measured with a radio-frequency 
bridge appropriate to the value of 
R being measured, e.g., resistance of 
greater than 100 ohms can best be 
measured on a parallel-substitution (a) 
bridge 2 or a transformer-ratio-arm . , . , , . 

. t ig . 15-1 Approximate equivalent cir-bridge.3 Lower values of impedance c u i t s ( a ) F o r a p h y s i c a l r e s i s t o r ( 6 ) 

can be measured better on a series For a capacitor, (c) For an inductor, 
substitution bridge.4 The inductance 
of most high-frequency resistors is not usually troublesome unless low 
resistance values are used at high frequencies—then the resistor lead 
inductance must also be taken into account. 

The choice and measurement of a capacitor depend upon its use. A 
capacitor for use as a resonant element usually requires low loss and there­
fore utilizes an air, mica, or high-stability ceramic dielectric. Such a 
capacitor may be measured with a Q meter 5 or a bridge in the frequency 
range of interest. The leads used for measurement should be nearly the 
same length as those to be used in the circuit. Such a measurement will 
give the "effective capacitance," not the value shown as C in Fig. 15-16. 
If the capacitor is actually a capacitive reactance, the measured value of 

1 International Resistance Company type HFR, for example. 
! The twin-T circuit is appropriate; see Terman and Pettit, op. cit., pp. 84-87. A 

commercial version is the General Radio Type 871-A. Another form is the Schering 
circuit, Terman and Pettit, op. cit., p. 74. A version commercially available is the 
Boonton Type 250-A R X Meter. See The Notebook (Boonton Radio Corp., Boonton 
N.J.), no. 2, pp. 1-4, Summer, 1954. 

3 See Terman and Pettit, op. cit., pp. 116-117. Suitable commercial instruments 
include the Wayne-Kerr Types B601 and 801. 

4 Terman and Pettit, op. cit., pp. 79-81. A commercial instrument is the General 
Radio Type 1606-A or its predecessor, Type 916-A. 

5 Terman and Pettit, op. cit, pp. 90-91; also The Notebook (Boonton Radio Corp., 
Boonton, N.J.), no. 1, Spring, 1954, no. 4, Winter, 1955; no. 13, Spring, 1957. A com­
mercial unit is the Boonton Type 260-A. 
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capacitance will always be greater than C. If the capacitor is to be used 
far below its resonant frequency, a low-frequency (e.g., 1-kc) measurement 
will suffice. 

A capacitor to be used as a bypass capacitor (therefore as an approxi­
mate short circuit) poses a different sort of problem. Such a capacitor is 
often operated near or even above its series resonant frequency, and low-

\z\ 1 - BAND ON METAL 
CASE 

MICA CAP. 

Fig. 15-2 Impedance of a typical capacitor over a wide frequency range, (a) Im­
pedance measured between the lead ends. (6) Impedance measured between lead and 
(metallic) case, (c) Effect of paralleling capacitors. 

frequency measurements are not often meaningful. Consider, for exam­
ple, a cathode bypass capacitor in a video amplifier. For the capacitor to 
be effective, the condition to be fulfilled is | gmZk | <5C 1 over the passband 
of the amplifier. Therefore \Zk\<C l/gm. The magnitude of the imped­
ance of a typical electrolytic capacitor is shown in Fig. 15-2. The high-

~ 1 K 

OSCILLATOR 

—7-^VVV—*• 
f R x 

1 
OSCILLATOR 

—7-^VVV—*• 
f R x 

1 
t 

= f 
OSCILLATOR 

—7-^VVV—*• 
f R x 

1 
|Z| = V2R 

FOR \Z\«R 
( I . E . , V 1 » V 2 ) 

Fig. 15-3 Method of measuring impedance magnitude. 

frequency impedance is largely due to the lead length of the capacitor and 
can be reduced by reducing the size of the loop through which the current 
passes. Note that paralleling a small and a large capacitor (Fig. 15-2c) 
usually is ineffective because the resulting resonance will produce a peak 
in \Z\ unless the Q is very low. 
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The simple measuring circuit for capacitors to be used in video ampli­
fiers (Fig. 15-3) allows direct measurement of \Z\. The impedance meas­
ured will be that effective between the two points X-X. A series substi­
tution bridge could, of course, be used, but the measurements would be 
more laborious. 

For capacitors to be used at still higher frequencies, another useful meas­
urement is the determination of the self-resonant frequency. The 0.01-juf 
ceramic capacitor shown in Fig. 15-4 resonates at ~ 1 0 Mc, as measured 
by coupling an oscillator ("grid-dip meter") loosely to the resonant circuit 

Fig. 15-4 (a) Resonant circuit formed of disk ceramic capacitor and its leads. (6) Im­
pedance of capacitor and leads. 

formed by short-circuiting the capacitor by its leads. Above this fre­
quency the capacitor acts at its terminals (including 3̂ -in. lead wires) like 
an inductor. (The inductance is mostly lead inductance.) Note that the 
resonance is not necessarily bad as long as \Z\ stays sufficiently low in 
the desired band; one might, in fact, intentionally choose the capacitor 
and its leads to resonate within the band in order to achieve the lowest 
possible bypass impedance. The impedance of the capacitor-inductor 
combination may be approximated by taking the low-frequency value of 
C and the self-resonant frequency /n, as shown in the figure. 

Knowledge of the interstage capacitance is fundamental to wideband 
vacuum-tube amplifier design and should be known for transistor amplifier 
design. The main difficulty of measurement is caused by the necessity 
of measurement while the active device is operating. The capacitance is 
small and is best measured by a device which uses a small enough signal 
to prevent overdriving of a vacuum tube. Suitable instruments include 
the Boonton R X Meter and the Tektronix LC Meter; these deliver less 
than 0.1 volt across the unknown impedance. Larger voltages may over­
drive the grid circuit of the tube and cause nonlinear loading of the un-
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known capacitance; erroneous measurements can result. A typical meas­
urement with the LC Meter for a video interstage is shown in Fig. 15-5. 
The plate load resistor must be disconnected to keep from loading the 
LC Meter. The consequent removal of plate current from the tube does 
not significantly change the output capacitance. The tube in the next 
stage should operate under normal bias, however, to produce the proper 
input capacitance which is sensitive to the d-c operating conditions. Any 

Tube operating normally 

Fig. 15-5 Measurement of interstage capacitance with Tektronix LC Meter. 

bypass capacitors should be effective at the frequency of measurement (in 
this case 135 kc). Measurement with the R X Meter is similar, but the 
plate load resistor need not be removed since the bridge can balance out 
the conductive component. 

If the amplifier being measured has high gain, the capacitance measure­
ment is complicated by the possibility of feedback from other stages affect­
ing the measurement. One way to prevent this is to remove the tubes 
from other stages in the amplifier. 

l/«2 

'1 

i 
-o- 5k< 

Q meter 
Fig. 15-6 A plot for determining the self-resonant frequency, true inductance, and dis­
tributed capacity of an inductor. 

In some cases the total interstage capacitance may be deduced by merely 
measuring the cold capacitance of the interstage with the tubes removed. 
Since this is a purely passive circuit, the measurement is somewhat easier 
because no regeneration or overloading problems exist. The capacitance 
of the tubes may then be added in or taken from a table such as Table 10-7. 

The measurement of inductors suitable for wideband amplifiers is readily 
accomplished with a Q meter or suitable bridge. The measurement should 
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50-500 Q 

Fig. 15-7 Diagram of a jig for measuring the h-f input capacitance and conductance 
of a tube. 

and give resonance at infinite frequency. The self-resonant frequency is 
also given by such a plot from the value of 1/to2 for zero added C. 

15-2 Measurement of Vacuum-tube Parameters. The measure­
ment of the low-frequency tube parameters necessary for amplifier design 
may be done on a tube, bridge with considerable accuracy. The principle 
of operation is covered in several standard texts and will not be repeated 
here.2 Measurement with the usual tube tester is at best only qualitative 
because the exact operating point is usually unknown. 

On the other hand, measurement of the input and output admittance of 
a tube is not as easy or well documented. A test jig for measuring input 
admittance is shown in Fig. 15-7. For valid results all the leads carrying 
r-f currents should be as short as possible and the capacitances should all 
be chosen for minimum r-f impedance. Connections are shown for a tube 
with two cathode leads. The a-c component of plate current is returned 
to the cathode through one cathode lead. The grid circuit is completed 

1 See, for instance, Terman and Pettit, op. tit., pp. 100-102. 
* Ibid., chap. 7. 

be made near the frequency of use, particularly if measured Q is important. 
The measured inductance is always somewhat higher than the "true" in­
ductance L shown in Fig. 15-lc because of the distributed capacitance. 
Several methods of determining the value of L are given in texts; 1 one 
suitable method is to plot the capacitance required to resonate the induc­
tor versus l/oi2, as shown in Fig. 15-6. Such a plot should result in a 
straight line which has a negative-capacitance intercept; i.e., the intercept 
is the negative capacitance required to cancel the distributed capacitance 
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through the other cathode lead, thereby reducing the input conductance 
due to cathode lead inductance. If the tube is not to be operated in this 
way in the circuit, the two cathode leads should be paralleled and the a-c 
plate current returned directly to ground. All leads to the jig should be 
decoupled so that no r-f potentials exist on them. 

The most convenient instrument for the measurement is the R X Meter 
shown, but other parallel substitution bridges suitable for measuring high 
impedances, such as the Wayne-Kerr, may be used. The signal applied 
to the tube should not be greater than a few tenths of a volt to prevent 
overloading. Inadequate shielding or improper placement of bridge and 
jig leads is indicated when the null of the bridge changes when "grounded" 
wires are touched. 

The procedure for measurement is first to balance the bridge with the 
jig removed. The jig is added, and the admittance of the jig is measured 
without the tube. The tube is then added to the jig and the total admit­
tance measured. The input admittance is the difference between the total 
and jig admittance. The method presupposes that the electrical length 
between the tube and bridge is very small, so that line-length corrections 
need not be made. 

The output admittance of a tube may be measured in a similar manner 
by putting the bridge terminals in the plate circuit with an r-f choke to 
carry plate current to the tube. 

The measurement of the direct admittances as described as well as the 
measurement of the transfer admittances in the vhf and uhf region may be 
accomplished with a special transfer admittance meter. For wideband 
amplifier design even in the vhf region, knowledge of the direct admit­
tances (particularly the input admittance) and the interelectrode capac­
itances usually suffices. Consequently, such elaborate instrumentation 
and measurement are not often necessary. 

One additional tube parameter which is difficult to measure is the equiva­
lent noise resistance Req. The best method of measuring this resistance is 
to measure the noise factor F of an amplifier input stage especially designed 
to make the effect of Req dominant in determining the noise factor. Refer­
ence to Eq. (13-20) shows that this may be accomplished by making the 
source conductance very large. Then F is very nearly 

F = 1 + G S « e q G, » GT, Gi (15-1) 

A suitable preamplifier for the measurement is shown in Fig. 15-8; the 
noise diode, 5722, provides a calibrated source of noise current1 across the 
100-ohm resistor which also constitutes the necessary high value of Gs-
The other equipment necessary is a high-gain bandpass amplifier and an 

1 Considerations in the use of a noise diode to measure amplifier noise figure are 
discussed in Sec. 15-7. 
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Cs 0.002 for 30-60 Mc 
Choose L for desired 
center frequency 

Noise generator Tube under test 

Fig. 15-8 A preamplifier for measurement. 

output meter. The noise factor is measured as described in Sec. 15-7. 
From the known values of F and Gs, i ? e q may be calculated by using 
Eq. (15-1). 

1 5 - 3 Measurement of Low-frequency Transistor Parameters. 
Several types of commercial equipment exist for the measurement of the 
low-frequency transistor parameters, usually the h parameters. For 
reasons outlined in Chap. 2 the h's are the easiest to measure, especially 
in the common-base or common-emitter connections. Simple jigs may 
also be used in conjunction with an oscillator and a-c millivoltmeter to 
measure the h's. Figure 15-9 shows a jig for measuring hue and h2ie 

with considerable precision if care is taken to ensure that the millivolt-
level signals are uncontaminated by spurious signals. The approximate 
values of hne and h21e for the values given in the figure are 

hUe = 10 6F, (15-2) 
hsu = 10 4 F 2 (15-3) 

1 M±l% 
- o — V v V 

Fig. 15-9 A jig for measuring the low-frequency transistor h parameters 7in f fand 7t2i f. 

(F, = 1 volt.) 
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These values assume that VS» V\ and V, = 1 volt. This is the same 
as saying that hUe <5C 106 ohms, a condition which is true for most condi­
tions of operation. 

The circuit for measuring h12e and h22e is shown in Fig. 15-10 and is 
similar to the preceding circuit. The transformer shown is desirable to 
allow grounding the voltmeter. For the conditions of Vs = 1 volt, the 
parameters are given by 

h22e = 10~2V2 (15-4) 

h12e = Vi (15-5) 

Note that all the parameters are direct-reading; i.e., the voltmeter reading 
need only be multiplied by the appropriate power of 10 to get the desired 

Fig. 15-10 A jig for measuring kue and h^u- (V, =• 1 volt.) 

parameter. In all cases the output of the voltmeter should be monitored 
with an oscilloscope, not only to determine whether spurious signals are 
present but also to determine whether the transistor is operating linearly. 
The measurements must be made at an extremely low signal level to en­
sure linear operation under all conditions of biasing. For example, the 
conditions shown for measuring h2ie apply a base a-c current of 1 /*a rms, 
or 1.4 n& peak. If a transistor with h2u = 100 were to be measured at a 
collector current of 100 /ta, the drive current would be sufficiently high 
to completely cut off the collector current for a part of the cycle, resulting 
in very nonlinear operation. For the circuits shown, the input can be con­
veniently reduced by a factor of 10, which then increases the coefficients 
of Eqs. (15-2) and (15-5) tenfold. A good test to see whether or not the 
small-signal parameters are truly being measured on an active device is to 
take several measurements at different signal levels. If the signal level is 
too large, the measured parameter values will change with level. 

If the T-circuit parameters (Fig. 2-9) are desired, the most convenient 
way of obtaining them is through the h parameters. Table 15-1 gives 
conversion formulas for finding the T parameters from the common-
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Table 15-1 

1 -

rb = / t i l e — 

^21e 

emitter h parameters. The formulas contain the approximation that 
r c ( l — a) X > re, an inequality which is usually very good. 

1 5 - 4 M e a s u r e m e n t o f T r a n s i s t o r H i g h - f r e q u e n c y P a r a m e t e r s . 

Because many different high-frequency transistor equivalent circuits are 
possible, there are a multitude of different ways to measure the h-f charac­
teristics of a transistor. The discussion herein will be centered about 
measuring the elements of the hybrid-pi circuit, which has been used 
throughout this text and is repeated in Fig. 15-11. Relatively simple 
measurements will be described which are nevertheless capable of ade­
quately describing the operation of the transistor for engineering purposes. 
For more precise measurements the reader may refer to literature describ­
ing the specific measuring equipment, e.g., the Rhode and Schwartz Dia-
graph, the General Radio transfer-function meter, and the Wayne-Kerr 
r-f bridges. 

One of the most useful h-f parameters which can be readily measured 
with simple equipment is the frequency / ( defined in Chap. 2, i.e., the 
frequency at which the common-emitter current gain \ h2ie\ becomes unity. 
A suitable jig for measuring | h 2 i c \ is shown in Fig. 15-12. The r-f oscilla­
tor and 20-kilohm resistor provide a constant-current source for the base 
of the transistor. The collector current is measured as the drop across a 
50-ohm line termination by means of 
the crystal detector. Because of the 
high frequency of operation of the 
jig, careful attention must be paid 
to lead dress, lead length, and un­
wanted capacitances. The method 
of operation of the jig is to connect 
a short circuit from the base to the F i g . 1 5 _ u The high-frequency pi equiv-
emitter contacts of the socket (a alent circuit. 
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defunct transistor with a wire between collector and base is convenient). 
The r-f oscillator output is then increased until some reference level is 
established on the output meter. This reference level must represent 
only a few millivolts of r-f signal to ensure linear operation when the 
transistor is measured. The setting of the attenuator is noted for this ref­
erence reading (say N db). The short circuit is now removed from the 
jig and a transistor inserted and properly biased for the condition of oper­
ation desired. The attenuation of the attenuator is now increased (say to 

To r-f 20 K 

oscillator (|RC type HFR) 
(o} - t — AA/V 

0.01 

H e ® ® - T - f t 

To d-c 

microvoltmeter 

Crystal rectifier 

Oscillator Attenuator Jig 
Crystal 
rectifier 

D-c 
microvoltmeter 

Oscillator Attenuator Jig 
Crystal 
rectifier 

D-c 
microvoltmeter 

(b) 

Fig. 15-12 A jig and measurement setup for measuring fr. 

M db) until the reference reading is again obtained on the output meter. 
The current gain of the transistor is then M — N db. The accuracy of the 
measurement depends upon hNE<£.2Q kilohms (so that the transistor is 
effectively driven by a current source) and the accuracy of the attenuator 
but does not depend upon the linearity of the output meter. A small error 
is incurred by the finite impedance in the collector circuit. 

To find ft, several such measurements are made of ) h2ie\ to find a region 
in which \h2Xe\ is decreasing inversely with frequency. For a normal 
transistor this is a broad frequency range. The value of / ( then is given 
by the equation 

ft = ! W / i ) l / i (15-6) 

where \h2u(fi)\ is the value of \h2ie\ at the frequency fx. Once the 
proper frequency range is determined for a given transistor type, only one 
measurement is required to determine ft. This is an advantage of this 
measurement as compared with the measurement of fa, for example, where 
several measurements are required to find a —3-db point. The measure­
ment of ft should usually be conducted at such a frequency that the cur-



SEC. 4] TRANSISTOR HIGH-FREQUENCY PARAMETERS 305 

rent gain is of the order of 5. At frequencies much higher than this the 
equivalent circuit may not be too satisfactory because of anomalous effects. 

The measurement of collector capacitance Cc may be done with any of 
several bridges, a Q meter, or the Tektronix LC Meter. The latter permits 
direct reading of Cc on a meter used with the simple jig shown in Fig. 
15-13. The guard terminal on the LC Meter is used to keep the signal 
current through the upper 10-mh choke to a minimum so that the meter 
may be zeroed with the transistor removed. Upon insertion of the tran­
sistor the meter reads the direct capacitance added between the input 
terminal of the meter and ground. The added capacitance is in part the 

-Tektronix LC meter 
• 1 

Inputo 

Guard » 

Ground o 

Case 

10 mh 

Fig. 15-13 A jig for measuring Cc with the Tektronix LC Meter. 

capacitance from the collector lead to the case, a capacitance which is not 
properly part of Cc. This parasitic capacitance may be removed from the 
meter indication by connecting the case of the transistor to the guard 
terminal of the meter (on the assumption, of course, that the case is not 
connected internally to the transistor). 

The extrinsic base resistance r'b is probably the most difficult element in 
the equivalent circuit to measure accurately. A method which gives a 
good approximate result for transistors in which Cc is not extremely small 
is shown in Fig. 15-14. In this jig an r-f voltage applied to the collector 
of the transistor causes current to flow primarily through Cc and then 
through r'b and the 100-ohm external resistor, as in Fig. 15-146. The mag­
nitude of the current is measured in switch position b as the drop across 
the 100 ohms. The drop across r'b is measured in position a. On the as­
sumption that the same current flows through both resistances, r'b is 

WOVa 

~v7 (15-7) 

where Va and Vb are the voltage readings in the respective switch posi­
tions. (Note that if VB is set to 1 mv, for example, the voltmeter reads 



306 AMPLIFIER MEASUREMENTS [CHAP. 15 

OSCILLATOR 0.01 

(6) 

Fig. 15-14 A jig and its equivalent circuit for measuring r'b-

r'b directly, with 100 ohms being full scale.) The accuracy of the measure­
ment depends upon the capacitance shown as Cs being small compared 
with Cc so that the current through the two resistors is truly equal. 
Grounding the case of the transistor, if possible, helps reduce Cs. 

In principle, these measurements give all the necessary parameters for 
the equivalent circuit of Fig. 15-11 since R may be calculated if the d-c 
emitter current and the low-frequency current gain are known. For more 
accurate results a direct measurement of R would be desirable, and is 
actually possible. A plot of the input impedance hne of the transistor for 
all frequencies is shown in Fig. 15-15. The values of both r'b and R may be 
obtained from such a plot, which is a semicircle of radius R/2 centered at 
r'b + R/2. In practice the data for hne are measured by using an r-f 
bridge and are plotted as shown in Fig. 15-15. A circle is then fitted to 

Fig. 15-15 The circle diagram for finding r'b and R. 
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the measured data by trial and error in such a way as best to approximate 
the data. The intersection of the circle and the real axis gives the values 
of r'b and r'b + R. This method of obtaining r'b, although more laborious 
than the preceding method, probably leads to a more nearly correct result 
because the value of resistance obtained is less influenced by direct capaci­
tance from collector to base. Since this capacitance is not negligible com­
pared with Cc in vhf transistors, particularly mesa units, the circular plot is 
particularly applicable to these units. 

If an accurate value of r'b is obtained by the preceding means, then a 
different method of obtaining Cc may be useful, particularly in the case 

Fig. 15-16 The measurement of high-frequency hyx,. 

of mesa transistors that have a collector capacitance which may be approx­
imated by splitting it into two parts (Fig. 15-16). One is the ordinary 
collector capacitance Cc; the other, C0, is also caused by the collector deple­
tion region but does not cause the current due to V2 to flow through r'b. 
Therefore the capacitance designated C0 acts like a direct capacitance 
between collector and base. In a mesa unit the two capacitances might 
be of the same order of magnitude. The previous measurement will meas­
ure the two capacitances in parallel, thus resulting in too large a value for 
Cc. This difficulty may be obviated by measuring | hi2b | = | Vi/V21. For 
the equivalent circuit in Fig. 15-16 

arbCc 

I hi2b | = r r ~ = osrbCe assuming h12b « 1 (15-8) 
\joirbCc + 1| 

If the values of co, r'b, and hi2b are known, the value of Cc may be calcu­
lated. The measurement must be at a frequency sufficiently high for the 
current flowing through r'c (see Fig. 2-20) to be negligible in comparison 
with the current through Cc. The practical difficulty in the measurement 
is obtaining a high impedance at the emitter in measuring V\. 

15-5 Amplifier Gain Measurement. Two basic methods of amplifier 
gain measurement are shown in Fig. 15-17. The first method is a very 
straightforward method of measuring voltage gain but suffers from several 
faults which should be understood. The method is to connect the ampli­
fier under test to a generator of suitable frequency range and then to meas-
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ure directly the input and output signal voltages. If the amplifier has 
much gain, the signal level at the input may be too low to measure with 
an ordinary a-c millivoltmeter. Of course the signal level may be increased 

VTVM 

(a) 
Signal 

generator 
Signal 

generator 
Signal 

generator 

Signal 

generator 

Attenuator 

(*o) 

(6) 

A r n p ^ > ^ Load VTVM 
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(G+jB) 

i 
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Fig. 15-17 Two methods of measuring amplifier gain. 

but this may cause overloading of the amplifier under test. A convenient 
way of finding the proper level at which to take the gain measurement is 
to plot the output of the amplifier as a function of the input, as shown in 
Fig. 15-18. From this curve it is easy to see that too low a level will con-

Input, dbm 

Fig. 15-18 A typical amplifier input-output characteristic. 

taminate the measured output signal with noise and too high a level will 
cause nonlinearity of the amplifier. 

The direct measurement is also unsatisfactory if the frequency response 
of the amplifier is desired, because the measured gain-vs.-frequency curve 
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will also contain the difference in the gain-vs.-frequency characteristics of 
the two voltmeters. Even using the same voltmeter at input and output 
will not solve the problem, because the frequency characteristics often are 
not exactly the same on different scale ranges. 

The second measuring method shown in Fig. 15-176 is much more satis­
factory because the accuracy of measurement is almost completely de­
pendent upon the accuracy of the passive attenuator used. Since such 
attenuators may be obtained with high accuracy, wide frequency range 

Fig. 15-19 The typical form of a wideband attenuator and its Thevenin equivalent. 

(0 to 500 Mc, typically), and almost unlimited attenuation, reliance upon 
the attenuator is practical if the operation of the attenuator is well under­
stood. An attenuator suitable for testing wideband amplifiers is usually 
of the form shown in Fig. 15-19a, where the number of attenuating sec­
tions is varied to change the over-all attenuation. Typical values of Ro 
are 50 to 100 ohms to match common coaxial cables. The attenuation 
marked upon the unit is the voltage (or current) ratio at input and output 
when the attenuator is terminated in Ro, that is, 

Vi 
ni = 20 log — db 

V2 

Looking into terminals 1-1' to the right or into terminals 3-3' to the left, 
one sees R0 as long as the opposite end of the attenuator is terminated in 
R0. Because of this property, the entire attenuator of Fig. 15-19a may 
be replaced by a Thevenin equivalent, good for any frequency, as shown 
in Fig. 15-196. Note that the voltage V appearing across RL. and the 
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available power P a v from the attenuator are 

VSRL 1 
7 = — (15-9) 

R0 + RL log" 1 (JV/20) 
V 2 

Pav = 71 (15-10) 
4 [log- 1 (N/20)]R0 

Or if the power is expressed in terms of dbm (decibels with reference to a 
level of 1 mw), the available power is simply 

•Pav = P&v,s — N all powers in dbm (15-11) 

where Pav,s is the power available from the source Vs and R0. 
If the attenuator does not provide the correct source resistance for the 

amplifier, the source resistance may be raised or lowered by adding series or 
shunt resistance, respectively, at the output of the attenuator. The new 
output voltage or power is easily computed by using the Thevenin equiva­
lent of Fig. 15-196. 

By the method of Fig. 15-17 the voltage gain of the amplifier may be 
found if the input resistance of the amplifier is known. In the usual case 
the input impedance of the amplifier is considerably greater than the 50 to 
100 ohms of the attenuator so that the attenuator is adequately terminated 
by merely connecting Ro in shunt with the amplifier terminals. The at­
tenuator is adjusted to give equal readings in positions 1 and 2 of the volt­
meter switch. The voltage gain is then equal to the attenuator setting 
plus 6 db. Note that neither the linearity nor the calibration of the volt­
meter enters into the reading. Consequently, if the gain vs. frequency is 
measured, the voltmeter frequency response does not cause error. (Note 
also that omitting the resistor at the input of the attenuator removes the 
need for adding 6 db to the attenuator reading.) 

Measurement of the various kinds of power gain may also be most easily 
done with the aid of an attenuator. For example, the transducer gain may 
be found by calculating the available power input to the amplifier, Pi, from 
Eq. (15-10). The attenuator should be connected to the amplifier with 
no terminating resistor added. The transducer gain in Fig. 15-17 is then 

V2
2G 

AT = (15-12) 
Pi 

The available power gain is measured in the same way, but the load 
must be adjusted for maximum power output from the amplifier. In either 
case the source impedance presented by the attenuator and any series or 
shunt impedance must be correct for the amplifier. If the amplifier were 
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to be opeiated from a 600-ohm line, then a 550-ohm resistor should be 
added in series with a 50-ohm attenuator to simulate the actual source. 

The measurement of gain or frequency response of very high-gain ampli­
fiers is complicated by the problem of regeneration. All connections made 
to the amplifier should be coaxial, with tight-fitting connectors. It is often 
useful to employ cables with a double shield braid to reduce leakage and 
input-output coupling caused by shield porosity. In extreme cases, at 
least the cable between the attenuator and amplifier input may have to be 
cable with a copper-tubing outside conductor. The input and output con­
nections should be kept physically separated to reduce the chance of cou­
pling. The number of ground loops should be kept to a minimum; this may 
mean in some cases that the power-line ground provided with much test 
equipment must be removed from all but one line connection. 

Two tests may be used to discover whether or not the setup is adequately 
shielded. The easiest is to reduce the output of the signal source to as near 
zero as possible by adding attenuation at the input. Any signal except 
random noise remaining in the output may indicate either the presence of a 
spurious signal, e.g., a strong nearby transmitter, or leakage from the 
generator or cables. In an extreme case of leakage, the amplifier may oscil­
late. Terminating the input in a shielded, coaxial resistor should stop the 
oscillation if cable leakage is at fault. 

A more sensitive test for regeneration is to plot several gain-vs.-frequency 
curves for different values of amplifier gain, i.e., different gain-control set­
tings. If no regeneration is present, a well-designed amplifier should have a 
frequency response which is substantially independent of gain. In the pres­
ence of regeneration the band shape and frequency of maximum gain usually 
shift markedly, the bandwidth usually becoming narrower as the gain is 
increased. Some small amount of band-shape change should be expected, 
however, because of the change of the active-element parameters with gain 
and because of a small, irreducible amount of feedback, due primarily to 
the active elements. 

A very convenient way of conducting this latter test is to apply a swept-
frequency oscillator to the input of the amplifier and to observe the output 
with an oscilloscope. By this means, a display of relative gain vs. frequency 
may be obtained, and the changes in band shape as gain is varied may be 
seen directly. 

The importance of eliminating regeneration cannot be too strongly 
stressed, because the presence of even a small amount will completely 
obscure the careful design of an amplifier. 

Sometimes the gain of a single stage or group of stages in an amplifier is 
desired. One cannot connect a voltmeter or other instrument across an 
interstage without more or less upsetting that interstage. Even a diode 
probe has several picofarads of capacitance and would seriously detune 
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most wideband stages. One method of avoiding the detuning problem is 
to convert the following stage into a broadband voltmeter-amplifier stage, 
as shown in Fig. 15-20. In the figure the stage to be measured is tube (a) 
and the network between (a) and (6). Since the grid circuit of (b) is undis­
turbed by the added conductance in the plate circuit, the tuning of the 
interstage is undisturbed. The frequency response of (6) may be measured 

Attenuator 

To r-f 

millivoltmeter 

Stage to 

be measured 

Fig. 15-20 Measurement of the gain of a single stage by converting the following stage 
into a very wideband amplifier. 

by attaching the input to point 2—for many purposes the gain of (b) may 
be regarded as constant with frequency because of the large amount of 
loading in the plate circuit. The gain of the combination is found by sub­
tracting the gain of (6) from the over-all gain measured at point 1 (gains 
measured in decibels). 

Sometimes an indication of the signal being applied to a tube in a band-

Modulated 
signal 

generator 
Attenuator 

y —i\ 
A-c 

Normal 
VTVM 

r-f bypass 

Fig. 15-21 Measurement of a modulated r-f signal by the detected component at a 
cathode. 

pass amplifier can be obtained by measuring the detected signal in the 
cathode circuit of the tube. The signal is caused by the slight nonlinearity 
of the tube operating even with small signals. The equipment is set up as 
shown in Fig. 15-21. A modulated r-f signal is used for the input. The 
signal is passed through the stage in question, and a sensitive voltmeter is 
connected to the cathode of the following stage. (A standing-wave-de-
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tector amplifier is useful for the a-c millivojtmeter, because it may be tuned 
to the modulation frequency.) The detected signal is usually proportional 
to the square of the input voltage; hence the measuring stage either must 
be calibrated by connecting the attenuator output directly to the last grid 
or must be used only to obtain a reference reading; e.g., the frequency re­
sponse of the interstage is given by recording the attenuator readings re­
quired to produce a constant output as frequency is varied. 

15 -6 Amplifier Transient-response Measurement. The basic 
equipment necessary for a measurement of the transient response is shown 
in Fig. 15-22. Here the input is the test waveform, which is usually either a 
step (simulated by a square wave) or an impulse (short pulse). The output 
of the generator is reduced by an attenuator which must have constant 

Test generator 
(square wave 

or pulse) 

ft p 
Test generator 
(square wave 

or pulse) 

Attenuator 
v. Test generator 

(square wave 
or pulse) 

AmpT^> Oscilloscope 

Fig. 15-22 Measurement setup for determining transient response. 

attenuation and a constant time delay throughout the passband of the 
amplifier. The test signal is amplified by the amplifier being measured 
and displayed on a wideband oscilloscope. The measurement in principle 
is very simple; the usual troubles are associated with undesired output-
input coupling (see the previous section) and imperfections in the test 
equipment. 

The square-wave test signal is the most widely used because it is easiest 
to interpret and because the attainment of a sufficiently short pulse for 
impulse testing is often difficult. For measurement of rise time the square-
wave frequency is unimportant as long as the frequency is not so high that 
the amplifier output never reaches its 100 per cent value. The rise time 
and flat top of the input square wave are very important. The rise time 
should be short and free of overshoot compared with the amplifier. To 
preserve these characteristics, the output cables from the generator must 
be correctly terminated to eliminate reflections. 

The oscilloscope must have a short rise time and freedom from overshoot, 
also. A convenient check is to connect the oscilloscope directly to the out­
put of the attenuator and measure the over-all rise time Tx and overshoot. 
(The attenuation is, of course, reduced to give sufficient signal.) The 
overshoot should be negligible for accurate measurements. 

The rise time measured at the output of the amplifier, T0, is related 
approximately to the amplifier rise time TA by (see Sec. 4-10) 

- VT0
2 - Ti2 (15-13) 
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where T\ is the rise time of the generator plus oscilloscope. It is very im­
portant to test the amplifier for overloading in making transient measure­
ments because the overloaded amplifier still has a square-wave output. A 
simple test is to see whether or not a 6-db change in attenuation produces a 
2:1 change in output. Look also for changes in the overshoot, if any. 

Sometimes measurement on one or two stages of an amplifier is desired. 
A so-called "low-capacitance probe" is not usually effective because its 
capacitance is an appreciable fraction of the total interstage capacitance. 
The method shown in Fig. 15-20 may be adapted to video amplifiers to 
make internal measurements. 

Many square-wave and pulse generators are constructed with inadequate 
shielding, which may give rise to spurious outputs. One sign of trouble is a 
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Fig. 15-23 Setup for measuring noise factor. 

waveform synchronized to the square wave even when the attenuation is 
increased to remove the square wave. Such interference may be reduced 
by changing system grounds. Occasionally, one may have to install line 
filtering in the offending generator. 

The sag in an amplifier may be measured by decreasing the square-wave 
frequency until enough sag is present to be readily measured on the oscillo­
scope. Again, it is important that the amplifier be operating linearly. 

15-7 Measurement of Noise Factor. 1 The measurement of amplifier 
noise factor is complicated by the need for accurately calibrated signals at 
very low power levels. For example, the thermal noise generated in a re­
sistor at room temperature and in a 1-Mc bandwidth is about 4 X 10~ 1 5 

watt of available power. To measure the noise factor, an accurately cali­
brated source of about this magnitude must be available. Also, needless to 
say, all interfering and extraneous signals must be reduced to a level con­
siderably below this at the input of the amplifier. This means that unusual 
care must be taken in shielding the input leads (and output leads if the out­
put is at the same frequency as the input). 

The arrangement for making the noise-factor measurement is shown in 
Fig. 15-23. Here a calibrated signal generator which provides the proper 
source impedance for the amplifier is connected to the input of the ampli­
fier. For the measurement shown, the output of the amplifier is connected 
to a postamplifier which has sufficient gain to bring the noise signal up to a 

1 For further background information, see IRE Standards on Methods of Measuring 
Noise in Linear Twoports, 1959, Proc. IRE, vol. 48, pp. 60-68, January, 1960; also 
Terman and Pettit, op. cit., pp. 353-379. 
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level measurable by the power-measuring device. The latter must truly 
measure h-f power and is usually a bolometer or thermocouple. For a first 
example, assume that the bandwidth of the postamplifier is much smaller 
than the bandwidth of the amplifier being measured. The power output 
of the system is then measured with the signal generator connected but the 
signal output turned to zero. The power read is 

Pi = FAkT0B2 (15-14) 

where F is the average noise factor of the amplifier under test in the fre­
quency band B2, A is the transducer gain of the two amplifiers, and kT0B2 

is the available noise power from the signal generator in the band B2. 
[Compare with Eq. (14-3), which can be rewritten to give the actual rather 
than the available power output.] 

The signal from the signal generator is now increased until a new and 
higher reading P2 is obtained at the output. Since the signal and noise are 
uncorrelated, the new power is given by 

P2 = FAkT0B2 + APS (15-15) 

where Ps is the available signal power from the signal generator. The gain, 
which is relatively difficult to measure accurately and maintain constant, 
may be eliminated from Eqs. (15-14) and (15-15), giving an equation for F 
containing only externally measurable quantities. 

The temperature of the source must be the standard temperature, 290°K 
according to the standards for measuring noise factor. The ratio of P2/P\ 
should be reasonably large for accuracy, but, because of amplifier overload 
problems, the ratio is commonly made 2, in which case F becomes 

If B2 is much less than B\, as assumed, so that F is constant in the band 
B2, the noise factor measured is the single frequency or spot noise factor at 
the center frequency of B2. If this corresponds to the center frequency of 
Bx, then the measured value is essentially the F calculated in Chap. 13. 
The integrated noise factor is given by the equation 

/ F(f)A(f)df 
F = ~ 7 ^ (15-17) 

Mf)df 
O 
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Thoriated tungsten or 
tungsten filament 
diode — 
e.g., 5722 

V.. (-100-200 v) 

Fig. 15-24 Schematic diagram of a typical diode noise generator. 

One difficulty with the preceding method is the necessity of measuring 
the noise bandwidth, although the 3-db bandwidth is a good approximation 
for a multistage amplifier (see Sec. 14-5). The necessity for measuring the 
bandwidth may be removed by using a signal source with an available 
power distributed uniformly over the bandwidth of the amplifier. Such 
a signal source may be obtained by connecting a suitable diode across a 
resistance to provide the proper value of source resistance for the ampli­
fier. A typical diode unit is shown in Fig. 15-24. From Eq. (13-3), the 
mean-square value of the noise current in the plate of a temperature-
limited diode is 

C = 2qIdcB (13-3) 

Therefore the available power from the generator of Fig. 15-24 is (on the 
assumption that the rp of the diode is much larger than Rs) 

qId<.BRs 

(15-18) 

If the diode noise source is used in place of the calibrated signal generator, 

where F(f) and A(f) are the spot noise factor and transducer gain at the 
frequency / . The integrated noise factor can be measured by the same 
technique as before except that B2 must be much larger than Bx. If no 
postamplifier is used, the noise factor measured will also be the integrated 
noise factor because the detector responds to noise generated throughout 
the bandwidth of the amplifier. The integrated noise factor may also be 
found by measuring F(J) and A (J) and performing the indicated integration 
graphically. 
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the noise factor becomes 

~ P2/Px - 1 ~2~kT^ 

1 
= 207dofts for T0 = 290°K (15-19) 

P2/P1 ~ 1 
The powers Pi and P 2 are the output power without the diode being turned 
on and the output power with the diode on. Although the bandwidth of 
the system does not appear in the equation, the bandwidth of the second 

Diode Diode i 
noise 

generator generator 

Output indicator 

Fig. 15-25 Setup for measuring noise factor with a random-noise source and without a 
power meter. 

amplifier enters into determining whether the spot or integrated noise 
factor is measured, as discussed before. 

The accuracy of the diode noise generator is excellent if care is taken to 
ensure that no spurious signals enter through power-supply leads and if the 
diode is operated below the frequency at which self-resonances in the leads 
and transit time become important. In the type 5722 diode shown in Fig. 
15-24, lead resonances begin to become important in the 100- to 200-Mc 
region if operated at the 50-ohm impedance level. Special coaxial diodes 
are available which permit operation up to the 1,000-Mc region when 
transit-time corrections are made. Other random-noise sources which 
may be considered for particular applications are heated resistors and 
gaseous-discharge tubes. The latter are particularly useful in the micro­
wave region. 

The random-noise generator not only has the advantage of eliminating 
the necessity of a bandwidth measurement but can also eliminate the need 
for a true power-measuring device. This is an advantage because the sta­
bility and convenience of most power-measuring devices leave something 
to be desired. The procedure in using the setup shown in Fig. 15-25 is to 
obtain a reference reading with the noise diode current off on the d-c meter 
which reads the average value of the detected output signal. The diode 
generator is then turned on and the attenuator setting increased by 3 db. 
The d-C plate current of the noise diode is adjusted (by adjusting the heater 
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PROBLEMS 

15-1. Assume that a given O-Ol-^f ceramic capacitor comprises an ideal inductanceless 
capacitor in series with the lead inductance. Find the series resonant frequency of the 
capacitor and its leads if they are of |^-in. No. 20 copper wire. (Use the inductance 
calculated for a straight wire.1) 

15-2. A single-layer solenoid inductor is calculated and carefully wound to give a 
certain inductance. The inductor is then measured at a single high frequency and found 
to have too much inductance. Explain why this could occur even though the calculations 
and measurement are both correct. 

15-3. The resistance of a deposited carbon resistor does not change rapidly with 
frequency, but if such a resistor is measured on a series substitution bridge (i.e., measured 
in terms of series R and X), the measured resistance is found to vary considerably with 
frequency. Assume that the resistor may be represented by a parallel combination of 
Rp and a small capacitance Cp, and derive an equation giving the Rs and C s, which will 
be measured by a series substitution bridge at a given frequency. If the measured re­
sistor is to be used in a single-tuned interstage, show how the measured values of Rg and 
Cs relate to the interstage-element values. 

15-4. In an effort to prevent r-f energy from reaching the input stages of a 300-Mc 
amplifier, Mr. Jones installs the lowpass filter of Fig. P15-4 in the supply leads to the 
input stages of his amplifier. He calculates that it will supply more than adequate 
filtering at 300 Mc, but when he installs it, he discovers that the attenuation is much less 
than he hoped. 

o <7T0TP̂ -
f + 10 Mh 

-nfoTP—o-
10 Mh | + 

: 0.005 y, ^ i 0 0 

Fig. P15-4 

Calculate the attenuation (V1/V2 expressed in decibels) for the filter as shown. Then 
calculate the approximate attenuation if measurement shows that the self-resonant 
frequencies of the inductors and capacitor are 100 Mc and 30 Mc, respectively. (HINT: 
Replace each inductor by a capacitor which has the equivalent reactance at 300 Mc. 
The capacitor can be similarly replaced by an inductor.) Advise Mr. Jones of changes to 
improve his filter. (These must be physically realizable changes; i.e., don't tell him to 
buy a capacitor with no inductance!) 

1 For example, see F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book 
Company, Inc., New York, 1943. 

current) so that the reference reading is again obtained. This procedure 
makes P2 = 2P 1 ; so that the noise factor is 

F = 20IdcRs 

The fact that the signal applied to the detector has the same character for 
both power measurements allows use of an output indicator which does 
not respond proportionally to power. The linearity of the output meter is 
unimportant also, since only repeatability of readings is required. 
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15-5. The value of gm is needed to compare some amplifier calculations with the 
measured performance. Design a test jig for measuring the low-frequency value of gm 

if a tube bridge is not obtainable. You have available an audio oscillator, an a-c milli-
voltmeter, and any necessary precision resistors. 

15-6. The parameter h2i is defined as Iz/h for F 2 = 0. In the test setup of Fig. 15-9 
Vi is not quite zero because of the necessary presence of the 100-ohm resistor required to 
measure 1% Compute the error in the measured / i2 i e caused by the 100 ohms if the tran­
sistor actually has the parameters of the typical unit in Table 2-1. 

15-7. Devise a pair of jigs similar to those of Figs. 15-9 and 15-10 which would be 
suitable for measuring the y parameters of a transistor in the common-emitter connection. 
Include suitable values for the measuring resistors, and provide means of biasing. Use 
the typical transistor parameters of Table 2-1 to find typical values of the voltages which 
must be measured in each parameter measurement. 

15-8. Devise a measurement jig similar to that of Fig. 15-12 to measure /„ . Give 
suitable values for all the elements of the jig. Referring to Fig. 2-20, find a correction 
factor to apply to the cutoff frequency measured in the preceding jig. The correction fac­
tor is necessary because the collector current consists of two components: (1) the desired 
component due to the current generator ale, and (2) an undesired component due to 
the collector capacitance. (The current through rc is usually small enough to be neg­
lected.) 

15-9. The gain of two amplifiers is to be measured with the setup of Fig. 15-17 except 
that the resistor Bo at the input of the attenuator is omitted. Calculate the amplifier 
voltage gain for the following four cases. Assume in each case that the voltmeter reads 
the same at the input of the attenuator and the output of the amplifier. 

a. The amplifiers terminate the attenuator in Ro. The attenuator reads 8 db in one 
case and 63 db in the other. 

b. The amplifiers terminate the attenuator in an open circuit. The two attenuator 
readings are as in (a). 

(You will probably have to refer to a handbook for attenuator data.) 
15-10. The transducer gain of an amplifier of unknown input impedance is to be 

measured as shown in Fig. 15-17. The attenuator has JRO = 50 ohms. The amplifier is 
designed to be rim from a 500-ohm source and into a resistance of 1,500 ohms. Show by 
a sketch how you would arrange to make the measurement, and compute the amplifier 
gain if the attenuator reads 88 db for equal input and output voltages. 

15-11. The noise factor of an amplifier to be used from a 250-ohm source is to be 
measured with the setup of Fig. 15-23. The signal generator is calibrated in its open-
circuit terminal voltage, and it has an internal impedance of 10 ohms. To make the 
amplifier have the correct source impedace, a 240-ohm resistor is connected between the 
generator and amplifier input. The following data are available; find the noise factor. 

Amplifier under test is made up of two staggered single-tuned triples with an over-all 
3-db bandwidth of 8 Mc. 

Postamplifier is made up of two synchronously tuned single-tuned stages with an over-all 
3-db bandwidth of 0.5 Mc. 

Power output with signal generator disconnected = 3 mw. 
Power output with signal generator connected but turned off = 1 mw. 
Power output is 5 mw with the signal generator on and set to 4.5 juv. 
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Adjacent channel selectivity, 174 
a (alpha), 16 
a', 12, 14 
Alpha-cutoff frequency, 26 
Analogy, network, 181-191 

boundary conditions, 197 
conduction, 184-188, 191 
electrostatic, 182-184, 191 
membrane, 188-191 
use of conformal mapping, 191-194 

Approximation, gain magnitude, 
202-215 

equal-ripple, 193-194, 211-215 
maximally flat, 203-207 

linear phase, 190, 215-218 
with membrane analogy, 190 

Asymptotic approximations, gain and 
phase, 41-46 

Attenuator, 309 
Autotransformer, 254 

Band edge (see Cutoff) 
Bandpass-lowpass transformation, 

207-211, 250, 258 
Bandwidth, 3 

effect of regeneration, 311 
measurement (see Gain) 
noise, 287 

Bandwidth ratio (see Selectivity ratio) 

Bandwidth shrinkage, double-tuned, 249 
single-tuned, 171 

Bandwidth switching, 260 
Base resistance, 14, 16 

measurement, 305-307 
ft 19 

measurement, 301 
Beta-cutoff frequency, 34 
Biasing, transistor, 60 

vacuum-tube, 58 
Butterworth response (see Maximally 

flat response) 

Capacitance measurement, 295-298 
Cascaded stages, double-tuned, 249 

maximally fiat, 230 
RC stages, 109 
rise time of, 107 
stagger-peaked, 117 
video, 107-118 

Cascode amplifier, 288-291 
Cathode bias, effect on gain, 64 
Cathode follower, 52, 106 
Cathode lead inductance, effect of, 22, 24 
Cathode peaking, 140-142 
Chebyshev (see Equal-ripple response) 
Collector capacitance, 28 

measurement, 304 
Collector resistance, 15-16 
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Common-base amplifier, at high fre­
quencies, 75-78 

midband properties, 53 
Common-collector amplifier, midband 

properties, 56 
Common-emitter amplifier, at high fre­

quencies, 78-81 
midband properties, 55 

Conformal mapping, 191-194 
Critical damping, double-tuned, 178 
Critically damped transistor stage, 

96-107 
Cutoff, high-frequency, transistor, com­

mon-base, 75-78 
common-emitter, 78-81 

tube, 49 
low-frequency, transistor, 67-69 

tube, 41-63 

Decibel, 3 
Decoupling circuit, 143 
Delay time, 5, 110 

multiple stages, 113 
Distributed amplifier, 147-163 

basic theory, 148 
comparison with cascaded stages, 

158-162 
optimum stage arrangement, 150, 158 

Double-tuned stages, 241-256 
bandwidth shrinkage, 249 
cascaded stages, 249 
gain-bandwidth factor, Qi = Q 2 , 247 

Qi = oo, 248 
wideband, 250-252 

Emitter diffusion capacitance, 28 
Emitter follower (see Common-collector 

amplifier) 
Emitter resistance, 14, 16 
Equal-ripple response, 193-195, 211-215 

double-tuned, 249, 251-252 
gain-bandwidth factor, 233 

table, 234 
stagger-tuned, 229 

Equivalent circuit, noise, 267, 268, 271 
transistor, high-frequency, common-

base, 29 
hybrid-pi, 32 

with Miller capacitance, 78 
T, 29 

measurement, 301-307 
T, 16, 18, 29 

and h parameter relationships, 
21, 303 

tube, high-frequency, 20 
low-frequency, 10 
measurement, 299-301 

Equivalent noise resistance, tube, 266 
measurement, 300 
table, 275 

Feedback, 257-262 
Figure of merit, peaking, 91, 99 
Frequency, band-edge, 3 

cutoff, 3 
Frequency response, approximate plot­

ting, 41-49 
definition, 1 

/ ( , 35, 303, 304 

Gain, definitions, actual power, 1 
available, 1, 283 
insertion, 1 
transducer, 1 
voltage, 1 

measurement, 307-313 
midband, transistor, 53-58 

vacuum-tube, 53 
Gain-bandwidth factor, definition, 173 

double-tuned, capacitance-coupled, 
254 

Qi = Q 2 , 247 
Qi = °°, 248 
stagger-damped, 250 

feedback pair, 261 
single-tuned stages, equal-ripple, 234 

maximally flat, 231 
chart, 237 
table, 233 

synchronously tuned, 173 
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Gain-bandwidth product, common-base 
stage, 77 

common-emitter stage, 80 
pentode, 75 
single-tuned stage, 169 
transistor (/*), 35 

measurement, 303, 304 
tube, 235 

table, 88 
Gain/rise time, tube, 88 
Gaussian gain function, rise time, 11 In., 

122 
Geometric interpretation, 46 
Grounded-grid amplifier, 52, 281 (Prob. 

13-4) 
Grounded-plate amplifier (cathode fol­

lower), 52, 106 

h parameters, definition, 8 
measurement, 301-304, 307 

High-frequency response, transistor, 
75-81 

common-base, 75 
common-emitter, 78 

vacuum tube, 49, 75 
Hybrid parameters (see h parameters) 
Hybrid-pi equivalent circuit, deriva­

tion, 32 
measurement, 303-307 

Hyperbolic transformation, 193-195 

Ico, effect of, 60 
Image impedance, constant-^, 148, 153 

m-derived, 155 
Image poles, 195 
Image zeros, 196 
Impulse response, definition, 6 

relation to step response, 6, 110 
Inductance measurement, 298 
Input admittance, tube, effect of screen 

lead inductance, 25 
measurement, 299 
variation of, 23-24 

Input capacitance, tube, hot, 236 
Input impedance, transistor, common-

base, 31, 54 

Input impedance, common-collector, 56 
common-emitter, 55 

Interelectrode capacitances, tube, 88 
Interstages, video, four-terminal, 94-96 

series-peaked, 96-102 
shunt-peaked, 90-94,103-106, 

115-118 
Intrinsic transistor, 14 

Linear phase, maximally flat delay, 215 
transmission-line approximation, 156 
video network, 93, 94, 115 

Logarithmic transformation, 192 
Low-frequency compensation, 143 
Low-frequency response, of cascaded 

stages, 73, 87 (Prob. 3-12) 
effect on, of cathode impedance, 64 

of coupling circuit, 40 
of decoupling circuit, 69 
of emitter circuit, 67 
of screen circuit, 70 

Lowpass-to-bandpass transformation 
(see Wideband transformation) 

Maximally flat gain function, 203-207 
Maximally flat response, double-tuned 

circuit, 241-251 
stagger-tuned circuit, 222-229 

cascaded stages, 230 
gain-bandwidth factor, 231 

video, 92n,, 131 (Prob. 4-8) 
Miller capacitance, 37, 78 
Miller effect, transistor, 106 
H, transistor, 13 

vacuum tube, 11 
Multiple stages (see Cascaded stages) 

Narrow-band approximation, 179 
double-tuned, 243-250 
single-tuned, 170, 222 

Noise, input stage, transistor, 276-280 
tube, 271-276, 288-291 

1// , 280 
resistor, 264 
S h o t , 265 



324 INDEX 

Noise, transistor, 268-271 
tube, 266 

table, 275 
Noise diode, 316 
Noise equivalent circuit, transistor, 268, 

271 
tube, 267 

Noise factor, cascaded networks, 285 -
287 

definition, 273-284 
integrated, 315 
measurement, 314-318 
transistor, 278, 282 (Prob. 13-7) 
tube, 273, 281 (Prob. 13-4) 

Noise temperature, 287 

Poles-zeros, limitations on placement, 
180-191 

Random-noise sources, 317 
Regeneration, tests for, 311 
Resistance, measurement, 295 

noise (see Equivalent noise resistance; 
Noise) 

Rise time, definition, 5 
of ideal amplifier, 121 
measurement, 313 
minimum, 113 
relation to bandwidth, 121 

Rise times, combination of, 109, 117 

Optimum gain for maximum bandwidth, 
173 

Optimum source impedance, noise, 274, 
279 

Output stage, tube, figure of merit for, 
119 

video, 118 
Overshoot, definition, 5 

Paired echoes, 124-127 
Phase distortion, effect on transient 

response, 122-129 
Phase equalization, 123 
Phase response, 4 

approximate plotting, 43 
Phase velocity, constant-fc, 149,153 
Pole-zero diagram, double-tuned, 

capacitive coupling, 253 
inductive coupling, 243-251 

equal-ripple, 214 
linear phase, 217-218 
series-peaking, 98 
shunt-peaking, 93, 117 
single-tuned, 178, 179, 222-223 

maximally flat, 205-207, 223 
wideband, 210 

Poles, gain function, 47 
image, 195 

Sag, 133-145 
combination of causes, 135,138-140 
compensation, 143-145 
coupling circuit, 134 

table, 138 
definition, 5 
measurement, 314 

Selectivity function, 171 
Selectivity ratio, definition, 173-174 

double-tuned, 254 
feedback pair, 262 
maximally flat, graph for, 238 
stagger-tuned stages, 237-238 
for synchronously tuned stages, 174 

Series peaking, transistor, 96 
tube, 90n. 

Shot noise, 265 
Shunt peaking, 90-94, 103-106, 115-118 
Single-tuned circuit, approximation 

with, 202 
bandwidth, 169 
bandwidth shrinkage, 171 
gain-bandwidth product, 169 
narrow-band, 179 
pole-zero diagram, 178 
single-stage, 167-170, 177 

Skirt selectivity, 173 
Stability factor, bias, 62-63 
Stagger damping, 249-250 
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Stagger tuning, single-tuned, 211-240 
maximally flat, 222-229 

Staggered peaking, video, 115 
Step response, 4, 87-145 
Stray capacitance, measurement, 297 

T-equivalent circuit, conversion, from 
h parameters, 303 

to h parameters, 21 
measurement, 302-303 
variation of parameters, with IE, 17 

with VCB, 18 
(See also Equivalent circuit, tran­

sistor 
Terminating sections, 156 
Transconductance, 11 
Transformation, bandpass-lowpass, 

207-211, 250, 258 

Transit time effects, 24, 26 
Transmission line, artificial, 151-158 

constant-fc, 153-154 
m-derived, 154 

Two-port parameters, 7 
(See also h parameters) 

Wideband transformation, double-
tuned, 250 

single-tuned, 207-211, 258 

y parameters, definition, 8 

z parameters, definition, 8 
Zeros, gain function, 47 

image, 196 


